Skip to main content
Log in

Exact Solutions of the Navier–Stokes Equations for Describing the Rotating Fluid

  • AERO- AND GAS-DYNAMICS OF FLIGHT VEHICLES AND THEIR ENGINES
  • Technical Notes
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

A new exact solution of the Oberbeck–Boussinesq equations for the rotating fluid is obtained. The convection of the rotating fluid is described by the quadratic heating of the boundaries of an infinite liquid layer. This exact solution describes dynamic equilibria in an incompressible fluid or an incompressible gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Valiev, M., Stepanov, R., Pakhov, V., Salakhov, M., Zherekhov, V., and Barakos, G.N., Analytical and Experimental Study of the Integral Aerodynamic Characteristics of Low-Speed Wind Turbines, Aeronautical Journal, 2014, vol. 118, issue 1209, pp. 1229–1244.

    Article  Google Scholar 

  2. Stepanov, R., Pakhov, V., Bozhenko, A., Batrakov, A., Garipova, L., Kusyumov, A., Mikhailov, S., and Barakos, G.N., Experimental and Numerical Study of Rotor Aeroacoustics, Int. Journal of Aeroacoustics, 2017, vol. 16, issue 6, pp. 460–475.

    Article  Google Scholar 

  3. Pakhov, V.V., Faizullin, K.V., and Denisov, S.L., Measuring the Acoustic Characteristics of a Helicopter Rotormodel in a Wind Tunnel, Akusticheskii Zhurnal, 2020, vol. 66, no. 1, pp. 46–57 [Acoustical Physics, 2020, vol. 66, no. 1, pp. 44–54].

    Google Scholar 

  4. Girfanov, A.M. and Ledyankina, O.A., Simulation Model of Loads Created by a Hingeless Helicopter Rotor, Izv. Vuz. Av. Tekhnika, 2015, vol. 58, no. 2, pp. 29–33 [Russian Aeronautics (Engl. Transl.), vol. 58, no. 2, pp. 167–172].

    Google Scholar 

  5. Ershkov, S.V., Prosviryakov, E.Yu., Burmasheva, N.V., and Christianto, V., Towards Understanding the Algorithms for Solving the Navier–Stokes Equations, Fluid Dynamics Research, 2021, vol. 53, article no. 044501.

    Article  MathSciNet  Google Scholar 

  6. Gorshkov, A.V. and Prosviryakov, E.Yu., Ekman Convective Layer Flow of a Viscous Incompressible Fluid, Izv. RAN. Fizika Atmosfery i Okeana, 2018, vol. 54, no. 2, pp. 213–220 [Izvestiya, Atmospheric and Oceanic Physics (Engl. Transl.), 2018, vol. 54, no. 2, pp. 189–195].

    Google Scholar 

  7. Aristov, S.N. and Prosviryakov, E.Yu., Nonuniform Convective Couette Flow, Izvestiya RAN. Mekhanika Zhidkosti i Gaza, 2016, vol. 5, pp. 3–9, [Fluid Dynamics (Engl. Transl.), 2016, vol. 51, no. 5, pp. 581–587].

    MATH  Google Scholar 

  8. Aristov, S.N., Prosviryakov, E.Yu., and Spevak, L.F., Unsteady-State Bénard–Marangoni Convection in Layered Viscous Incompressible Flows, Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2016, no. 2, pp. 137–146 [Theoretical Foundations of Chemical Engineering (Engl. Transl.), 2016, vol. 50, no. 2, pp. 132–141].

    Google Scholar 

  9. Aristov, S.N., Prosviryakov, E.Yu., and Spevak, L.F., Nonstationary Laminar Thermal and Solutal Marangoni Convection of a Viscous Fluid, Vychislitel’naia Mekhanika Sploshnykh Sred, 2015, vol. 8, no. 4, pp. 445–456.

    Google Scholar 

  10. Aristov, S.N. and Prosviryakov, E.Yu., A New Class of Exact Solutions for Three Dimensional Thermal Diffusion Equations, Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2016, vol. 50, no. 3, pp. 294–301 [Theoretical Foundations of Chemical Engineering (Engl. Transl.), 2016, vol. 50, no. 3, pp. 286–293].

    Google Scholar 

  11. Chandrasekhar, S., Ellipsoidal Figures of Equilibrium, New Haven, London, Yale University Press, 1969.

    MATH  Google Scholar 

  12. Hadamard, J.S., Mouvement Permanent Lent d’Une Sphère Liquid et Visqueuse Dans un Liquide Visqueux, Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 1911, vol. 152, no. 25, pp. 1735–1752.

    MATH  Google Scholar 

  13. Rybczynski, W., Uber die fortschreitende Bewegung einer fliissigen Kugel in einem zahen Medium, Bulletin International de l’Académie des Sciences de Cracovie, 1911, Ser. A, no. 1, pp. 40–46.

    Google Scholar 

Download references

ACKNOWLEDGEMENTS

The study was supported by the Ministry of Science and Higher Education of the Russian Federation (registration number is NIOKTR AAAA-A20-120102190039-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Ledyankina.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2022, No. 2, pp. 184 - 188.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledyankina, O.A., Prosviryakov, E.Y. & Romanova, E.V. Exact Solutions of the Navier–Stokes Equations for Describing the Rotating Fluid. Russ. Aeronaut. 65, 431–437 (2022). https://doi.org/10.3103/S1068799822020246

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799822020246

Keywords

Navigation