Skip to main content
Log in

Estimation of efficiency of vertical antenna arrays in underwater sound channels

  • Remote Sensing of Natural Media
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The gain of the vertical antenna array in a randomly inhomogeneous ocean waveguide is numerically simulated on the assumption that the useful signal is generated by a finite set of mutually uncorrelated discrete spectrum modes and is received against the ocean noise background. It is shown that the choice of themost effective weight distribution of the array and the thus obtained gain strongly depend on both the modal spectra of the signal and noise and the number and position of the receiving elements in the channel. The critical factor is the mutual orthogonality of the waveguide modes at the array input, which indicates the possibility of specially arranging the elements for the known (expected) mode spectrum of the signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Brekhovskikh and Yu. P. Lysanov, Fundamentals of Ocean Acoustics, 2nd ed. Springer Series on Wave Phenomena (Springer, Berlin, 1991). Vol.

    Book  MATH  Google Scholar 

  2. L. M. Brekhovskikh, Waves in Layered Media (Academic Press, N. Y., 1980).

    MATH  Google Scholar 

  3. A. G. Nechaev, “Interferation Structure Damping of Acoustic Field in Ocean with Random Inhomogeneous,” Akust. Zh. 33(3), 535 (1987).[in Russian].

    MathSciNet  Google Scholar 

  4. A. L. Virovlyanskii, A. G. Kosterin, and A. N. Malakhov, “Mode Fluctuations in Canonic Underwater Sound Channel,” Sov. Phys. -Acoust. 35(2), 138 (1989).

    Google Scholar 

  5. V. V. Artel’nii and M. A. Raevskii, “Acoustic Field Intermode Correlations in a Waveguide with Random Volume in Homogeneities,” Akust. Zh. 35(5), 774 (1989).[in Russian].

    Google Scholar 

  6. A. G. Sazontov, “A Quasi-Classical Solution to the Radiation Transport Equation in a Scattering Medium with Regular Refraction,” Acoust. Phys. 42(4), 487 (1996).

    ADS  Google Scholar 

  7. W. C. Carey, “The Determination of Signal Coherence Length Based on Signal Coherence and Gain Measurements in Deep and Shallow Water,” J. Acoust. Soc. Amer. 104(2), 831 (1998).

    Article  ADS  Google Scholar 

  8. L. Wan, J. -X. Zhou, P. H. Rogers, and D. P. Knobles, “Spatial Coherence Measurements from two LShape Arrays in Shallow Water,” Acoust. Phys. 55(3), 383 (2009).

    Article  ADS  Google Scholar 

  9. J. A. Colosi, T. F. Duda, and A. K. Morozov, “Statistics of Low-Frequency Normal-Mode Amplitudes in an Ocean with Random Sound-Speed Perturbations: ShallowWater Environments,” J. Acoust. Soc. Amer. 131(2), 1749 (2012).

    Article  ADS  Google Scholar 

  10. B. F. Kur’yanov, “Underwater Ocean Noise,” in Ocean Acoustics: Current Status (Nauka, Moscow, 1982) [in Russian].

  11. A. A. Aredov, N. N. Okhrimenko, and A. V. Furduev, “Anisotropy of the Noise Field in the Ocean (Experiment and Calculations),” Sov. Phys. -Acoust. 34(2), 128 (1988).

    Google Scholar 

  12. V. V. Artel’nii, I. N. Didenkulov, and M. A. Raevskii, “Low-Frequency Dynamic Noise in a Randomly Inhomogeneous Ocean,” Akust. Zh. 34(1), 12 (1988).[in Russian].

    Google Scholar 

  13. W. A. Kuperman and F. Ingenito, “Spatial Correlation of Surface Generated Noise in a Stratified Ocean,” J. Acoust. Soc. Amer. 67(6), 1988 (1980).

    Article  ADS  MATH  Google Scholar 

  14. C. H. Harrison, “Formulas for Ambient Noise Level and Coherence,” J. Acoust. Soc. Amer. 99(4), 2055 (1996).

    Article  ADS  Google Scholar 

  15. Ya. S. Shifrin. “Current Status of the Statistic Theory of Antennas,” Radiotekh. Elelktron. 35(7), 1345 (1990).[in Russian].

    ADS  Google Scholar 

  16. R. M. Hamson, “The Theoretical Gain Limitations of a Passive Vertical Line Array in Shallow Water,” J. Acoust. Soc. Amer. 68(1), 156 (1980).

    Article  ADS  MATH  Google Scholar 

  17. E. Yu. Gorodetskaya, A. I. Malekhanov, and V. I. Talanov, “Modelling of Optimal Array Signal Processing in Underwater Sound Channels,” Sov. Phys. -Acoust. 38(6), 571 (1992).

    Google Scholar 

  18. E. Yu. Gorodetskaya, A. I. Malekhanov, A. G. Sazontov, and V. A. Farfel’, “Effects of Long-Range Propagation of Sound in a Random Inhomogeneous Ocean on the Gain Loss of a Horizontal Antenna Array,” Acoust. Phys. 42(5), 543 (1996).

    ADS  Google Scholar 

  19. N. K. Vdovicheva, E. Yu. Gorodetskaya, A. I. Malekhanov, and A. G. Sazontov, “Gain of a Vertical Antenna Array in a Randomly Inhomogeneous Oceanic Waveguide,” Acoust. Phys. 43(6), 669 (1997).

    ADS  Google Scholar 

  20. E. Yu. Gorodetskaya, A. I. Malekhanov, A. G. Sazontov, and N. K. Vdovicheva, “Coherence Effects on Array Beamforming in Shallow Water,” in Proceedings of the 5th European Conference on Underwater Acoustics (Lyon, France, 2000), pp. 1031–1036.

  21. A. V. Smirnov and A. I. Malekhanov, “Simulation of the Response of the Extended Horizontal Antenna on the Partially Coherent Multimode Signal in the Underwater Sound Channel,” in Proceedings of the 25th Session of the Russian Acoustic Society (Taganrog, Russia, 2012), pp. 209–212 [in Russian].

    Google Scholar 

  22. A. I. Malekhanov and A. V. Smirnov, “Large-Array Beamforming and Gain in Random Multimode Channels: Basic Physical Aspects and Performance Estimations,” in Proceedings of the 10th International Conference on Antenna Theory and Techniques (Kharkov, Ukraine, 2015), pp. 62–67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Labutina.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labutina, M.S., Malekhanov, A.I. & Smirnov, A.V. Estimation of efficiency of vertical antenna arrays in underwater sound channels. Phys. Wave Phen. 24, 161–167 (2016). https://doi.org/10.3103/S1541308X16020126

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X16020126

Navigation