Skip to main content
Log in

Study of the Method for Verification of the Hypothesis on Independence of Two-Dimensional Random Quantities Using a Nonparametric Classifier

  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The properties of the method for verification of the hypothesis on independence of random quantities based on the application of a nonparametric image recognition algorithm corresponding to the maximum likelihood criterion are studied. Estimation of distribution laws in classes is performed using initial statistical data in the assumption of independence and dependence of compared random quantities. In these conditions, estimates for image recognition error probabilities in classes are calculated. Their minimum value is used to make a decision on independence or dependence of random quantities. The proposed method avoids the problem of decomposition of the domain of random quantities into multidimensional intervals. The efficiency of the proposed method with complication of the dependence between random quantities and change of size of initial statistical data is studied via numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. V. S. Pugachev, Theory of Probability and Mathematical Statistics (Fizmatlit, Moscow, 2002).

  2. A. V. Lapko and V. A. Lapko, ‘‘Nonparametric algorithms of pattern recognition in the problem of testing a statistical hypothesis on identity of two distribution laws of random variables,’’ Optoelectron., Instrum. Data Process. 46, 545–550 (2010). https://doi.org/10.3103/S8756699011060069

    Article  Google Scholar 

  3. A. V. Lapko and V. A. Lapko, ‘‘Comparison of empirical and theoretical distribution functions of a random variable on the basis of a nonparametric classifier,’’ Optoelectron., Instrum. Data Process. 48, 37–41 (2012). https://doi.org/10.3103/S8756699012010050

    Article  Google Scholar 

  4. A. V. Lapko and V. A. Lapko, ‘‘A technique for testing hypotheses for distributions of multidimensional spectral data using a nonparametric pattern recognition algorithm,’’ Comput. Optics 43, 238–244 (2019). https://doi.org/10.18287/2412-6179-2019-43-2-238-244

    Article  ADS  Google Scholar 

  5. A. V. Lapko and V. A. Lapko, ‘‘Testing the hypothesis of the independence of two-dimensional random variables using a nonparametric algorithm for pattern recognition,’’ Optoelectron., Instrum. Data Process. 57, 149–155 (2021). https://doi.org/10.3103/S8756699021020114

    Article  ADS  Google Scholar 

  6. E. Parzen, ‘‘On estimation of a probability density function and mode,’’ Ann. Math. Stat. 33, 1065–1076 (1962). https://doi.org/10.1214/aoms/1177704472

    Article  MathSciNet  MATH  Google Scholar 

  7. V. A. Epanechnikov, ‘‘Non-parametric estimation fo a multivariate probability density,’’ Theory Probab. Its Appl. 14, 153–158 (1969). https://doi.org/10.1137/1114019

    Article  MathSciNet  Google Scholar 

  8. A. V. Lapko, A. V. Medvedev, and E. A. Tishina, ‘‘To the optimization of nonparametric estimates,’’ in Collection of Sci. Works on Algorithms and Programs for Systems of Automation of Experimental Research (Ilim, Frunze, 1975), pp. 105–116.

  9. M. Rudemo, ‘‘Empirical choice of histogram and kernel density estimators,’’ Scand. J. Stat. 9, 65–78 (1982).

    MathSciNet  MATH  Google Scholar 

  10. A. W. Bowman, ‘‘A comparative study of some kernel-based non-parametric density estimators,’’ J. Stat. Comput. Simul. 21, 313–327 (1982). https://doi.org/10.1080/00949658508810822

    Article  MATH  Google Scholar 

  11. P. Hall, ‘‘Large-sample optimality of least squares cross-validation in density estimation,’’ Ann. Stat. 11, 1156–1174 (1983).

    MathSciNet  MATH  Google Scholar 

  12. M. Jiang and S. B. Provost, ‘‘A hybrid bandwidth selection methodology for kernel density estimation,’’ J. Stat. Comput. Simul. 84, 614–627 (2014). https://doi.org/10.1080/00949655.2012.721366

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Dutta, ‘‘Cross-validation revisited,’’ Commun. Stat. Simul. Comput. 45, 472–490 (2016). https://doi.org/10.1080/03610918.2013.862275

    Article  MathSciNet  MATH  Google Scholar 

  14. N.-B. Heidenreich, A. Schindler, and S. Sperlich, ‘‘Bandwidth selection for kernel density estimation: a review of fully automatic selectors,’’ AStA Adv. Stat. Anal. 97, 403–433 (2013). https://doi.org/10.1007/s10182-013-0216-y

    Article  MathSciNet  MATH  Google Scholar 

  15. Q. Li and J. S. Racine, Nonparametric Econometrics: Theory and Practice (Princeton Univ. Press, Princeton, 2007).

    MATH  Google Scholar 

  16. R. P. W. Duin, ‘‘On the choice of smoothing parameters for Parzen estimators of probability density functions,’’ IEEE Trans. Comput. 25, 1175–1179 (1976). https://doi.org/10.1109/TC.1976.1674577

    Article  MATH  Google Scholar 

  17. Z. I. Botev and D. P. Kroese, ‘‘Non-asymptotic bandwidth selection for density estimation of discrete data,’’ Methodol. Comput. Appl. Probab. 10, 435–451 (2008). https://doi.org/10.1007/s11009-007-9057-z

    Article  MathSciNet  MATH  Google Scholar 

  18. A. V. Lapko and V. A. Lapko, ‘‘Method of fast bandwidth selection in a nonparametric classifier corresponding to the a posteriori probability maximum criterion,’’ Optoelectron., Instrum. Data Process. 55, 597–605 (2019). https://doi.org/10.3103/S8756699019060104

    Article  ADS  Google Scholar 

  19. A. V. Lapko and V. A. Lapko, ‘‘Modified fast algorithm for the bandwidth selection of the kernel density estimation,’’ Optoelectron., Instrum. Data Process. 56, 566–572 (2020). https://doi.org/10.3103/S8756699020060102

    Article  ADS  Google Scholar 

  20. D. W. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization (Wiley, New Jersey, 2015). https://doi.org/10.1002/9780470316849

  21. S. J. Sheather, ‘‘Density estimation,’’ Stat. Sci. 19, 588–597 (2004). https://doi.org/10.1214/088342304000000297

    Article  MATH  Google Scholar 

  22. B. W. Silverman, Density Estimation for Statistics and Data Analysis (Chapman and Hall, London, 1986).

    MATH  Google Scholar 

  23. A. V. Lapko and V. A. Lapko, ‘‘Estimation of a nonlinear functional of probability density when optimizing nonparametric decision functions,’’ Meas. Tech. 64, 13–20 (2021). https://doi.org/10.1007/s11018-021-01889-2

    Article  Google Scholar 

  24. A. S. Sharakshane, I. G. Zheleznov, and V. A. Ivnitskii, Complex Systems (Vysshaya Shkola, Moscow, 1977).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Lapko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Baldina

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapko, A.V., Lapko, V.A. & Bakhtina, A.V. Study of the Method for Verification of the Hypothesis on Independence of Two-Dimensional Random Quantities Using a Nonparametric Classifier. Optoelectron.Instrument.Proc. 57, 639–648 (2021). https://doi.org/10.3103/S8756699021060078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699021060078

Keywords:

Navigation