Skip to main content
Log in

Image segmentation based on the analysis of distances in an attribute space

  • Analysis and Synthesis of Signals and Images
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The image segmentation problem (partitioning into uniform regions) that uses brightness, color, and texture differences is considered. The criterion of uniformity is the estimation of the proximity of points in the combined attribute space. A metric is proposed for this space. This goal is achieved with a hierarchical algorithm based on the analysis of distances in the attribute space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. K. Pratt, Digital Image Processing (Wiley, 1978).

    Google Scholar 

  2. A. Rosenfeld and A. C. Kak, Digital Picture Processing, Vols. 1, 2 (Academic Press, New York, 1982).

    Google Scholar 

  3. R. C. Gonzalez and R. E. Woods, Digital Image Processing (Prentice Hall, 2008).

    Google Scholar 

  4. R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis (Wiley, 1973).

    MATH  Google Scholar 

  5. L. G. Roberts, “Machine Perception of Three-Dimensional Solids,” (Massachusetts Institute of Technology, 1963).

    Google Scholar 

  6. I. E. Sobel, Camera Models and Machine Perception Ph. D. Thesis (Stanford University, Palo Alto, 1970).

    Google Scholar 

  7. J. M. S. Prewitt, “Object Enhancement and Extraction,” Picture Processing and Psychopictorics (Academic Press, New York, 1970).

    Google Scholar 

  8. Ya. A. Furman, A. V. Krevetskii, and A. K. Peredreev, Introduction to Contour Analysis and Its Applications to Image and Signal Processing (Fizmatlit, Moscow, 2003) [in Russian].

    Google Scholar 

  9. J. J. Clark, “Authenticating Edges Produced by Zero-Crossing Algorithms,” IEEE Trans. Pattern Anal. Mach. Intel. 12(8), 830–831 (1989).

    Google Scholar 

  10. J. Canny, “A Computational Approach for Edge Detection,” IEEE Trans. Pattern Anal. Mach. Intel. 8(6), 679–698 (1986).

    Article  Google Scholar 

  11. Image Analysis and Mathematical Morphology. Vol. 2. Theoretical Advances, Ed. by J. Serra (Academic Press, New York, 1988).

    Google Scholar 

  12. Pattern Recogn. Special Issue on Mathematical Morphology and Nonlinear Image Processing 33(6), 875–1117 (2000).

    Google Scholar 

  13. R. Jain, R. Kasturi, and B. Schunk, Machine Vision (McGraw-Hill, New York, 1995).

    Google Scholar 

  14. K. S. Fu and J. K. Mui, “A Survey of Image Segmentation,” Pattern Recogn. 13(1), 3–16 (1981).

    Article  MathSciNet  Google Scholar 

  15. R. M. Haralick and L. G. Shapiro, “Image Segmentation Techniques,” Comput. Vis., Graph. Image Process 29(2), 100–132 (1985).

    Article  Google Scholar 

  16. R. M. Haralick and L. G. Shapiro, Computer and Robot Vision. Vol. 2 (Addison-Wesley, Reading, 1993).

    Google Scholar 

  17. L. G. Shapiro and G. C. Stockman, Computer Vision (Prentice Hall, Upper Saddle River, 2001).

    Google Scholar 

  18. A. K. Jain and R. C. Dubes, Algorithms for Clustering Data (Prentice Hall, Upper Saddle River, 1988).

    MATH  Google Scholar 

  19. Y. Ohta, T. Kanade, and T. Sakai, “Color Information for Region Segmentation,” Comput. Graph. Image Process 13(3), 224–241 (1980).

    Article  Google Scholar 

  20. N. K. Pal and S. K. Pal, “A Review on Image Segmentation Techniques,” Pattern Recogn. 26(9), 1277–1293 (1993).

    Article  Google Scholar 

  21. B. Jahne, Digital Image Processing (Springer-Verlag, Berlin-Heidelberg, 2005).

    Google Scholar 

  22. R. M. Haralick, “Image Texture Survey,” in Fundamentals in Computer Vision (CUP, Cambridge, 1983), pp. 145–172.

    Google Scholar 

  23. R. M. Haralick, “Statistical and Structural Approaches to Textures,” Proc. IEEE 67(5), 786–804 (1979).

    Article  Google Scholar 

  24. A. C. Bovik, M. Clark, and W. S. Geisler, “Multichannel Texture Analysis Using Localized Spatial Filters,” IEEE Trans. PAMI 12(1), 55–73 (1990).

    Article  Google Scholar 

  25. L. Van Gool, P. Dewaele, and A. Oosterlinck, “Texture Analysis Anno 1983,” Comput. Vis., Graph. Image Process. 29(3), 336–357 (1985).

    Article  Google Scholar 

  26. S. J. Roan and J. K. Aggarwal, “Multiple Resolution Imagery and Texture Analysis,” Pattern Recogn. 20(1), 17–31 (1987).

    Article  Google Scholar 

  27. T. Chang and C. J. Kuo, “Texture Analysis and Classification with Three-Structured Wavelet Transform,” IEEE Trans. Image Process 2(4), 429–441 (1993).

    Article  ADS  Google Scholar 

  28. O. Pichler, A. Teuner, and B. J. Hosticka, “A Comparison of Texture Feature Extraction Using Adaptive Gabor Filtering Pyramidal and Tree Structured Wavelet Transforms,” Pattern Recogn. 29(5), 733–742 (1996).

    Article  Google Scholar 

  29. A. K. Jain and F. Farrokhnia, “Unsupervised Texture Segmentation Using Gabor Filters,” Pattern Recog. 24(12), 1167–1186 (1991).

    Article  Google Scholar 

  30. D. Dunn and W. E. Higgins, “Optimal Gabor Filters for Texture Segmentation,” IEEE Trans. Image Process 4(7), 947–964 (1995).

    Article  ADS  Google Scholar 

  31. T. P. Weldon, W. E. Higgins, and D. F. Dunn, “Efficient Gabor Filter Design for Texture Segmentation,” Pattern Recogn. 29(12), 2005–2015 (1996).

    Article  Google Scholar 

  32. P. A. Chochia, “Two-Scale Image Model,” in Image Coding and Processing (Nauka, Moscow, 1988), pp. 69–87.

    Google Scholar 

  33. P. A. Chochia, “A Pyramidal Image Segmentation Algorithm,” J. Commun. Technol. Electron. 55(12), 1550–1560 (2010).

    Article  Google Scholar 

  34. K. N. Plataniotis and A. N. Venetsanopoulos, Color Image Processing and Applications (Springer, Berlin-Heidelberg, 2000).

    Book  Google Scholar 

  35. E. J. Carton, J. S. Weszka, and A. Rosenfeld, Some Basic Texture Analysis Techniques. TR-288 (Computer Science Center. Univ. of Maryland, 1974).

    Google Scholar 

  36. A. S. Kronrod, “Functions of Two Variables,” Uspekhi Matematicheskikh Nauk 5(1), 24–134 (1955).

    MathSciNet  Google Scholar 

  37. O. P. Milyukova and P. A. Chochia, “On Estimation of the Image Complexity by Two Dimensional Variations,” J. Commun. Technol. Electron. 58(6), 628–635 (2013).

    Article  Google Scholar 

  38. A. K. Jain, “Color Distance and Geodesics in Color 3 Space,” JOSA 62(11), 1287–1291 (1972).

    Article  ADS  Google Scholar 

  39. D. L. MacAdam, “Projective Transformations of the ICI Color Specifications,” JOSA 27(9), 294–299 (1935).

    ADS  Google Scholar 

  40. G. M. Hunter and K. Steiglitz, “Operation of Images Using Quad Trees,” IEEE Trans. PAMI-1, No. 2, 145–153 (1979).

    Google Scholar 

  41. A. Rosenfeld, “Quadtrees and Pyramids for Pattern Recognition and Image Analysis,” in Proc. of the 5th Intern. Conf. Pattern Recognition, Miami Beach, pp. 802–811 (1980).

    Google Scholar 

  42. P. Brodatz, Textures: A Photographic Album for Artists and Designers (Dover Publications, New York, 1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Chochia.

Additional information

Original Russian Text © P.A. Chochia, 2014, published in Avtometriya, 2014, Vol. 50, No. 6, pp. 97–110.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chochia, P.A. Image segmentation based on the analysis of distances in an attribute space. Optoelectron.Instrument.Proc. 50, 613–624 (2014). https://doi.org/10.3103/S8756699014060107

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699014060107

Keywords

Navigation