Skip to main content
Log in

Unsteady flows of a viscoplastic medium in channels

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

We numerically study the nonstationary Poiseuille problem for a Bingham-Il’yushin viscoplastic medium in ducts of various cross-sections. The medium acceleration and deceleration problems are solved by using the Duvaut-Lions variational setting and the finite-difference scheme proposed by the authors. The dependence of the stopping time on internal parameters such as density, viscosity, yield stress, and the cross-section geometry is studied. The obtained results are in good agreement with the well-known theoretical estimates of the stopping time. The numerical solution revealed a peculiar characteristic of the stagnant zone location, which is specific to unsteady flows. In the annulus, disk, and square, the stagnant zones arising shortly before the flow cessation surround the entire boundary contour; but for other domains, the stagnant zones go outside the critical curves surrounding the stagnant zones in the steady flow. The steady and unsteady flows are studied in some domains of complicated shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. M. Klimov, A. G. Petrov, and D. V. Georgievskii, Viscoplastic Flows: Dynamical Chaos, Stability, Mixing (Nauka, M oscow, 2005) [in Russian].

    Google Scholar 

  2. E. J. Dean, R. Glowinski, and G. Guidoboni, “On the Numerical Simulation of Bingham Visco-Plastic Flow: Old and New Results,” J. Non-Newtonian Fluid Mech. 142(1–3), 36–62 (2007).

    Article  MATH  Google Scholar 

  3. O. B. Magomedov and B. E. Pobedrya, “Certain Problems of Viscoelastoplastic Flow,” in Elasticity and Non-Elasticity, No. 4 (Izd-vo MGU, Moscow, 1975), pp. 152–169 [in Russian].

    Google Scholar 

  4. R. V. Goldstein and V. M. Entov, Qualitative Methods in Continuum Mechanics (Nauka, Moscow, 1989; Wiley, New York, 1994).

    Google Scholar 

  5. P. P. Mosolov and V. P. Miasnikov, “Variational Methods in the Theory of the Fluidity of a Viscous-Plastic Medium,” Prikl. Mat. Mekh. 29(3), 468–492 (1965) [J. Appl.Math. Mech. (Engl. Transl.) 29 (3), 545–577 (1965)].

    Google Scholar 

  6. P. P. Mosolov and V. P. Miasnikov, “On Stagnant Flow Regions of a Viscous-Plastic Medium in Pipes,” Prikl. Mat. Mekh. 30(4), 705–717 (1966) [J. Appl.Math. Mech. (Engl. Transl.) 30 (4), 841–854 (1966)].

    Google Scholar 

  7. P. P. Mosolov and V. P. Miasnikov, “On Qualitative Singularities of the Flow of a Viscoplastic Medium in Pipes,” Prikl. Mat. Mekh. 31(3), 581–585 (1967) [J. Appl. Math. Mech. (Engl. Transl.) 31 (3), 609–613 (1967)].

    Google Scholar 

  8. G. Duvaut and J.-L. Lions, Les Inéquations en Mécanique et Physique (Dunod, Paris, 1972; Nauka, Moscow, 1980).

    MATH  Google Scholar 

  9. I. Ekeland and R. Temam, Convex Analysis and Variational Problems (North-Holland, Amsterdam, 1976; Mir, Moscow, 1979).

    MATH  Google Scholar 

  10. A. G. Petrov and L. V. Cherepanov, “Exact Solutions of the Problem of Unsteady Flow of a Viscoplastic Medium in a Circular Pipe,” Izv. Akad. Nauk. Mekh. Zhidk. Gaza, No. 2. 13–24 (2003) [Fluid Dyn. (Engl. Transl.) 38 (2), 175–185 (2003)].

  11. R. Glowinski, J.-L. Lions, and R. Trémolières, Analyse Numérique des Inéquations Variationnelles (Dunod, Parix, 1976; Mir, Moscow, 1979).

    MATH  Google Scholar 

  12. N. Roquet and P. Saramito, “An Adaptive Finite Element Method for Viscoplastic Fluid Flows in Pipes,” Comput.Meth. Appl. Mech. Eng. 190(40), 5391–5412 (2001).

    Article  MATH  Google Scholar 

  13. M. A. Moyers-Gonzalez and I. A. Frigaard, “Numerical Solution of Duct Flows of Multiple Visco-Plastic Fluids,” J. Non-Newtonian Fluid Mech. 122(1–3), 227–241 (2004).

    Article  MATH  Google Scholar 

  14. R. R. Huilgol and Z. You, “Application of the Augmented Lagrangian Method to Steady Pipe Flows of Bingham, Casson, and Herschel-Bulkley Fluids,” J. Non-Newtonian Fluid Mech. 128(2–3), 126–143 (2005).

    Article  Google Scholar 

  15. E. A. Muravleva, “Finite-Difference Schemes for the Computation of Viscoplastic Medium Flows in a Channel,” Mat. Modelirovanie, No. 12, 76–88 (2008) [Math. Models Comput. Simul. (Engl. Transl.) 1 (6), 768–779 (2009)].

  16. M. Chatzimina, G. C. Georgiou, I. Argyropaidas, et al., “Cessation of Couette and Poiseuille Flows of a Bingham Plastic and Finite Stopping Times,” JNNFM 129(3), 117–127 (2005).

    Google Scholar 

  17. M. Chatzimina, C. Xenophontosa, G. C. Georgiou, et al. “Cessation of Annular Poiseuille Flows of Bingham Plastics,” JNNFM 142(1–3), 135–142 (2007).

    MATH  Google Scholar 

  18. H. Zhu and D. De Kee, “A Numerical Study of Couette Flow of Non-Newtonian Fluids with a Yield Stress,” J. Non-Newtonian Fluid Mech. 143(2–3), 64–70 (2007).

    Article  Google Scholar 

  19. V. P. Beskachko, O. A. Golovnya, and A. E. Korenchenko, “Numerical Model of Nonstationary Flow of a Viscoplastic Fluid in a Rotational Viscosimeter,” Inzh. Fiz. Zh., No. 1, 12–14 (2007) [J. Engng Phys. Thermophys. (Engl. Transl.) 80 (1), 11–14 (2007)].

  20. A. E. Korenchenko, V. P. Beskachko, and O. A. Golovnya, “Possibility of Identifying the Viscoplastic Properties of Liquids in Experiments with an Oscillating-Cup Viscometer,” Zh. Prikl. Mekh. Tekh. Fiz. 47(6), 59–63 (2006) [J. Appl.Mech. Tech. Phys. (Engl. Transl.) 47 (6), 821–824 (2006)].

    MATH  Google Scholar 

  21. A. A. Il’yushin, “Deformation of Viscoplastic Bodies,” Uchen. Zap. MGU. Mekh. 39, 3–81 (1940).

    Google Scholar 

  22. P. P. Mosolov, “Variational Methods in Nonstationary Problems (Parabolic Case),” Izv. Akad. Nauk SSSR. Ser. Mat. 34(2), 425–457 (1970). [Math. USSR Izv. (Engl. Transl.) 4 (2), 431–463 (1970)]

    MathSciNet  Google Scholar 

  23. M. Fortin and R. Glowinski, Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems (North-Holland, Amsterdam, 1983).

    MATH  Google Scholar 

  24. E. A. Muravleva, “Solution of a Nonstationary Problem for the BinghamMedium on the Basis of Evolutional Variational Inequalities,” in 7th All-Russian Seminar “Grid Methods in Boundary-Value Problems and Applications (Kazan, 2007), pp. 213–218 [in Russian].

  25. E. A. Muravleva, “The Problem of Stopping the Flow of a Viscoplastic Medium in a Channel,” Vestnik Moskov. Univ. Ser. I. Mat. Mekh., 64(1), 67–70 (2009) [Moscow Univ. Mech. Bull. (Engl. Transl.) 64 (1), 25–28 (2009)].

    MathSciNet  Google Scholar 

  26. G. I. Marchuk, Splitting Methods (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Muravleva.

Additional information

Original Russian Text © E.A. Muravleva, L.V. Muravleva, 2009, published in Izvestiya Akademii Nauk. Mekhanika Tverdogo Tela, 2009, No. 5, pp. 164–188.

About this article

Cite this article

Muravleva, E.A., Muravleva, L.V. Unsteady flows of a viscoplastic medium in channels. Mech. Solids 44, 792–812 (2009). https://doi.org/10.3103/S0025654409050173

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654409050173

Key words

Navigation