Skip to main content
Log in

On equations of the linear theory of shells with surface stresses taken into account

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

We construct equations of equilibrium and constitutive relations of linear theory of plates and shells with transverse shear strain taken into account, which are based on reducing the spatial elasticity relations with surface stresses taken into account to two-dimensional equations given on the shell median surface. We analyze the influence of surface elasticity moduli on the effective stiffness of plates and shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. L. Duan, J. Wang, and B. L. Karihaloo, “Theory of Elasticity at the Nanoscale,” Adv. Appl. Mech. 42, 1–63 (2008).

    Article  Google Scholar 

  2. L. D. Landau and E.M. Lifshitz, Course of Theoretical Physics, Vol. 6: Hydrodynamics (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  3. J. Wang, H. L. Duan, Z. P. Huang, and B. L. Karihaloo, “A Scaling Law for Properties of Nano-Structured Materials,” Proc. Roy. Soc. London. Ser. A 462(2069), 1355–1363 (2006).

    Article  MATH  ADS  Google Scholar 

  4. H. L. Duan, J. Wang, Z. P. Huang, and B. L. Karihaloo, “Size-Dependent Effective Elastic Constants of Solids Containing Nano-Inhomogeneities with Interface Stress,” J. Mech. Phys. Solids 53(7), 1574–1596 (2005).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. S. Cuenot, C. Frétigny, S. Demoustier-Champagne, and B. Nysten, “Surface TensionEffect on the Mechanical Properties of Nanomaterials Measured by Atomic Force Microscopy,” Phys. Rev. B 69(16), 165410–5 (2004).

    Article  ADS  Google Scholar 

  6. G. Y. Jing, H. L. Duan, X.M. Sun, et al., “Surface Effects on Elastic Properties of Silver Nanowires: Contact Atomic-Force Microscopy,” Phys. Rev. B 73(23), 235409–6 (2006).

    Article  ADS  Google Scholar 

  7. C. Q. Chen, Y. Shi, Y. S. Zhang, et al., “Size Dependence of Young’s Modulus in ZnO Nanowires,” Phys. Rev. Lett. 96(7), 075505–4 (2006).

    Article  ADS  Google Scholar 

  8. P. S. Laplace, Sur L’action Capillaire in Supplément au Traitéde Mécanique Céleste, T. 4, Livre X (Gauthier-Villars, Paris, 1805).

    Google Scholar 

  9. P. S. Laplace, À la Théorie de L’action Capillaire in Supplément au TraitédeMécanique Céleste, T. 4, Livre X (Gauthier-Villars, Paris, 1805).

    Google Scholar 

  10. T. Young, “An Essay on the Cohesion of Fluids,” Phil. Trans. Roy. Soc. London 95, 65–87 (1805).

    Article  Google Scholar 

  11. J. W. Gibbs, “On the Equilibrium of Heterogeneous Substances,” in The Collected Works of J. Willard Gibbs (Longmans, Green, New York, 1928), pp. 55–353.

    Google Scholar 

  12. E. Orowan, “Surface Energy and Surface Tension in Solids and Fluids,” Proc. Roy. Soc. London. Ser. A 316(1527), 473–491 (1970).

    Article  ADS  Google Scholar 

  13. Ya. S. Podstrigach and Yu. Z. Povstenko, Introduction to Mechanics of Surface Phenomena in Strained Rigid Bodies (Naukova Dumka, Kiev, 1985) [in Russian].

    Google Scholar 

  14. R. Finn, Equilibrium Capillary Surfaces (Springer, New York, 1986; Mir,Moscow, 1989).

    MATH  Google Scholar 

  15. A. I. Rusanov, “Thermodynamics of Solid Surfaces,” Surf. Sci. Rep. 23(6–8), 173–247 (1996).

    Article  ADS  Google Scholar 

  16. A. I. Rusanov, “Surface Thermodynamics Revisited,” Surf. Sci. Rep. 58(5–8), 111–239 (2005).

    Article  ADS  Google Scholar 

  17. M. E. Gurtin and A. I. Murdoch, “A Continuum Theory of Elastic Material Surfaces,” Arch. Rational Mech. Anal. 57(4), 291–323 (1975).

    MATH  MathSciNet  Google Scholar 

  18. M. E. Gurtin and A. I. Murdoch, “Addenda to Our Paper: A Continuum Theory of ElasticMaterial Surfaces,” Arch. Rational Mech. Anal. 59(4), 389–390 (1975).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. A. I. Murdoch, “A Thermodynamical Theory of Elastic Material Interfaces,” Quart. J. Mech. Appl. Math. 29(3), 245–274 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  20. P. Podio-Guidugli and G. V. Caffarelli, “Surface Interaction Potentials in Elasticity,” Arch. Rational Mech. Anal. 109(4), 343–383 (1990).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Yu. Z. Povstenko, “Theoretical Investigation of Phenomena Caused by Heterogeneous Surface Tension in Solids,” J. Mech. Phys. Solids 41(9), 1499–1514 (1993).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. D. J. Steigmann and R.W. Ogden, “Elastic Surface-Substrate Interactions,” Proc. Roy. Soc. London. Ser.A 455(1982), 437–474 (1999).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. V. A. Eremeev and L.M. Zubov, Mechanics of Elastic Shells (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  24. P. Lu, L. H. He, H. P. Lee, and C. Lu, “Thin Plate Theory Including Surface Effects,” Int. J. Solids Struct. 43(16), 4631–4647 (2006).

    Article  MATH  Google Scholar 

  25. Y. J. Shi, W. L. Guo, and C. Q. Ru, “Relevance of Timoshenko-Beam Model to Microtubules of Low Shear Modulus,” Phys. E: Low-Dimens. Syst. Nanostruct. 41(2), 213–219 (2008).

    Article  ADS  Google Scholar 

  26. D. W. Huang, “Size-Dependent Response of Ultra-Thin Films with Surface Effects,” Int. J. Solids Struct. 45(2), 568–579 (2008).

    Article  MATH  Google Scholar 

  27. J. Peng, J. Wu, K. C. Hwang, et al., “Can a Single-Wall Carbon Nanotube be Modeled as a Thin Shell?” J. Mech. Phys. Solids 56(6), 2213–2224 (2008).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. K. Dahmen, S. Lehwald, and H. Ibach, “Bending of Crystalline Plates under the Influence of Surface Stress-a Finite Element Analysis,” Surf. Sci. 446(1–2), 161–173 (2000).

    Article  ADS  Google Scholar 

  29. R. E. Miller and V. B. Shenoy, “Size-Dependent Elastic Properties of Nanosized Structural Elements,” Nanotech. 11(3), 139–147 (2000).

    Article  ADS  Google Scholar 

  30. J. G. Guo and Y. P. Zhao, “The Size-Dependent Elastic Properties of Nanofilms with Surface Effects,” J. Appl. Phys. 98(7), 074306–11 (2005).

    Article  ADS  Google Scholar 

  31. C. F. Lu, C. W. Lim, and W. Q. Chen, “Size-Dependent Elastic Behavior of FGM Ultra-Thin Films Based on Generalized Refined Theory,” Int. J. Solids Struct. 46(5), 1176–1185 (2009).

    Article  Google Scholar 

  32. V. A. Eremeyev, H. Altenbach, and N. F. Morozov, “The Influence of Surface Tension on the Effective Stiffness of Nanosize Plates,” Dokl. Ross. Akad. Nauk 424(5), 618–621 (2009) [Dokl. Phys. (Engl. Transl.) 54 (2), 98–100 (2009)].

    Google Scholar 

  33. H. Altenbach and P. A. Zhilin, “General Theory of Elastic Simple Shells,” Uspekhi Mekh. 11(4), 107–148 (1988).

    MathSciNet  Google Scholar 

  34. H. Altenbach, “An Alternative Determination of Transverse Shear Stiffness for Sandwich and Laminated Plates,” Int. J. Solids Struct. 37(25), 3503–3520 (2000).

    Article  MATH  Google Scholar 

  35. P. A. Zhilin, Applied Mechanics. Foundations of Shell Theory (Izd-vo Polytechn. Univ., St. Petersburg, 2006) [in Russian].

    Google Scholar 

  36. H. Altenbach and V. A. Eremeyev, “Direct Approach Based Analysis of Plates Composed of Functionally Graded Materials,” Arch. Appl. Mech. 78(10), 775–794 (2008).

    Article  MATH  Google Scholar 

  37. L. M. Zubov, Methods of Nonlinear Elasticity in Shell Theory (Izd-vo RGU, Rostov-on-Don, 1982) [in Russian].

    Google Scholar 

  38. S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells (McGraw Hill, New York, 1959; Fizmatgiz, Moscow, 1963).

    Google Scholar 

  39. A. L. Goldenveizer, Theory of Thin Elastic Shells (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  40. V. V. Novozhilov, K. F. Chernykh, and E. I. Mikhailovskii, The Linear Theory of Thin Shells (Politekhnika, Leningrad, 1991) [in Russian].

    Google Scholar 

  41. L. P. Lebedev, M. J. Cloud, and V. A. Eremeyev, Tensor Analysis with Applications in Mechanics (World Scientific, Singapore, 2010).

    MATH  Google Scholar 

  42. E. B. Wilson, Vector Analysis, Founded upon the Lectures of J. W. Gibbs (Yale Univ. Press, New Haven, 1901).

    Google Scholar 

  43. P. A. Zhilin, Vector and Second-Rank Tensors in Three-Dimensional Space (Nestor, St. Petersburg, 2001) [in Russian].

    Google Scholar 

  44. L. M. Zubov and M. I. Karyakin, Tensor Calculus. Foundations of the Theory (Vuzovskaya Kniga, Moscow, 2006) [in Russian].

    Google Scholar 

  45. E. I. Grigolyuk and I. T. Selezov, Nonclassical Theories of Rod, Plate, and Shell Vibrations in Results in Science and Technology. Mechanics of Deformable Solids, Vol. 5 (VINITI, Moscow, 1973) [in Russian].

    Google Scholar 

  46. E. I. Grigolyuk and P. P. Chulkov, Stability and Vibrations of Three-Layer Shells (Mashinostroenie, Moscow, 1973) [in Russian].

    Google Scholar 

  47. H. Altenbach, J. Altenbach, and W. Kissing, Mechanics of Composite Structural Elements (Springer, Berlin, 2004).

    Google Scholar 

  48. R. Szilard, Theories and Applications of Plate Analysis. Classical, Numerical, and Engineering Methods (Wiley, Hoboken, New Jersey, 2004).

    Book  Google Scholar 

  49. C. M. Wang, J. N. Reddy, and K. H. Lee, Shear Deformable Beams and Shells (Elsevier, Amsterdam, 2000).

    Google Scholar 

  50. H. Altenbach and V. A. Eremeyev, “Eigen-Vibrations of Plates Made of Functionally Graded Material,” CMC 9(2), 153–178 (2009).

    Google Scholar 

  51. J. Chróścielewski, J. Makowski, and W. Pietraszkiewicz, Statics and Dynamics of Multifold Shells: Nonlinear Theory and Finite Element Method (Wydawnictwo IPPT PAN, Warsaw, 2004) [in Polish].

    Google Scholar 

  52. A. Libai and J. G. Simmonds, The Nonlinear Theory of Elastic Shells (Cambridge Univ. Press, Cambridge, 1998).

    Book  MATH  Google Scholar 

  53. W. Pietraszkiewicz, Finite Rotations and Lagrangian Description in the Nonlinear Theory of Shells (Polish Sci. Publ., Warsaw-Poznan, 1979).

    Google Scholar 

  54. P.M. Naghdi, “The Theory of Shells and Plates,” in Handbuch der Physik, Vol. 2, Ed. by S. Flügge (Berlin, 1972), pp. 425–640.

  55. M. B. Rubin, Cosserat Theories: Shells, Rods, and Points (Kluwer, Dordrecht, 2000).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Altenbach.

Additional information

Original Russian Text © H. Altenbach, V.A. Eremeev, and N.F. Morozov, 2010, published in Izvestiya Akademii Nauk. Mekhanika Tverdogo Tela, 2010, No. 3, pp. 30–44.

About this article

Cite this article

Altenbach, H., Eremeev, V.A. & Morozov, N.F. On equations of the linear theory of shells with surface stresses taken into account. Mech. Solids 45, 331–342 (2010). https://doi.org/10.3103/S0025654410030040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654410030040

Key words

Navigation