Skip to main content
Log in

Adsorption of Polar Molecules on a Solid Substrate

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract—A simple scheme for estimating the adsorption energy of polar molecules on solid state substrates has been proposed within the Harrison bond orbitals method. Analytical expressions are obtained for the ionic and metallic components of the adsorption energy for diatomic and tetraatomic molecules. The adsorption of GaCl and AlCl3 on a semiconductor substrate is considered as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Y. Wang and G. S. Hwang, “Origin of nonlocal interactions in adsorption of polar molecules on Si(001)-2 x 1,” J. Chem. Phys. 122, 164706 (2005).

    Article  ADS  Google Scholar 

  2. H. X. Young, Y. Yu, L.F. Xu, and C. Z. Gu, “Ab initio study of molecular adsorption on hydrogenated diamond (001) surfaces,” J. Phys.: Conf. Ser. 29, 145–149 (2006).

    ADS  Google Scholar 

  3. C. Campbell, J. R. B. Gomes, M. Fischer, and M. Jorge, “A new model for predicting adsorption of polar molecules in MOFs with unsaturated metal sites,” Phys. Chem. Lett. 9 (12), 3544–3553 (2018).

    Article  Google Scholar 

  4. G. R. Hutchison, M. A. Ratner, and T.J. Marks, “Adsorption of polar molecules on a molecular surface,” J. Phys. Chem. 105 (15), 2881–2884 (2001).

    Article  Google Scholar 

  5. D. Deutsch, A. Natan, Y. Shapira, and L. Kronik, “Electrostatic properties of adsorbed polar molecules: Opposite behavior of a single molecule and a molecular monolayer,” J. Am. Chem. Soc. 120 (10), 2989–2997 (2007).

    Article  Google Scholar 

  6. A. Kokalj, “Electrostatic model for treating long-range lateral interactions between polar molecules adsorbed on metal surfaces,” Phys. Rev. B. 84, 045418 (2011).

    Article  ADS  Google Scholar 

  7. E. S. Alldredge, Ş. C. Bădescu, N. Bajwa, et al., “Adsorption of linear chain molecules on carbon nanotubes,” Phys. Rev. B. 78, 161403(R) (2008).

  8. X. Zhao and J. K. Johnson, “An effective potential for adsorption of polar molecules on graphite,” Mol. Simul. 31 (1), 1–10 (2005).

    Article  Google Scholar 

  9. J. Berashevich and T. Chakraborty, “Doping graphene by adsorption of polar molecules at the oxidized zigzag edges,” Phys. Rev. B. 81, 205431 (2010).

    Article  ADS  Google Scholar 

  10. O. Echt, A. Kaiser, S. Zottl, et al., “Adsorption of polar and nonpolar molecules on isolated cationic C60, C70, and their aggregates,” ChemPlusChem. 78, 910–920 (2013).

    Article  Google Scholar 

  11. W. A. Harrison, Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond (W.H. Freeman and Company, San Francisco, 1980; Mir, Moscow, 1983).

  12. W. A. Harrison, “Theory of two-center bond,” Phys. Rev. B. 27 (6), 3592–3604 (1983).

    Article  ADS  Google Scholar 

  13. S. Yu. Davydov and O. V. Posrednik, The Method of Binding Orbitals in the Theory of Semiconductors (SPbGETU, St. Petersburg, 2007) [in Russian].

  14. Physical Values, The Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  15. Short Handbook of Physical Chemical Values, Ed. by K. P. Mishchenko and A. A. Ravdel’ (Khimiya, Leningrad, 1974) [in Russian].

    Google Scholar 

  16. H.Y. Abdulah, “Dissociation energy of ground state of GaCl molecule,” J. Ovonic Res. 9 (2), 55–60 (2013).

    Google Scholar 

  17. S. Yu. Davydov, Adsorption Theory: Model Hamiltonian Method (SPbGETU LETI, St. Petersburg, 2013) [in Russian].

  18. S. Yu. Davydov, A. A. Lebedev, and O. V. Posrednik, An Elementary Introduction to the Theory of Nanosystems (Lan’, St. Petersburg, 2014) [in Russian].

  19. V. I. Gavrilenko, A. M. Grekhov, D. V. Korbutyak, and V. G. Litovchenko, Optical Properties of Semiconductors: A Handbook (Naukova Dumka, Kiev, 1987) [in Russian].

    Google Scholar 

  20. C. Sasaoka, Y. Kato, and A. Usui, “Thermal desorption of galliumchloride adsorbed on GaAs (100),” Jap. J. Appl. Phys. 30 (10A), L1756–L1759 (1991).

    Article  ADS  Google Scholar 

  21. Tables of Interatomic Distances and Configuration in Molecules and Ions, Ed. by L. E. Sutton (The Chemical Society, London, 1958).

    Google Scholar 

  22. K. Aarset, Q. Shen, H. Thomassen, et al., “Molecular structure of the aluminum halides, Al2Cl6, AlCl3, Al2Br6, AlBr3, and AlI3, obtained by gas-hhase electron-diffraction and ab initio molecular orbital calculations,” J. Phys. Chem. A. 103 (11), 1644–1652 (1999).

    Article  Google Scholar 

  23. S. Y. Davydov and O. V. Posrednik, “On the theory of elastic properties of two-dimensional hexagonal structures Phys. Solid State57 (4), 837–843 (2015).

  24. L. A. Bol’shov, A. P. Napartovich, A. G. Naumovets, and A. G. Fedorus, “Submonolayer films on the surface of metals,” Sov. Phys. Usp. 20, 432 (1977).

  25. O. M. Braun and V. K. Medvedev, “Interaction between particles adsorbed on metal surfaces,” Sov. Phys. Usp. 32 (4), 328 (1989).

  26. S. A. Kukushkin, V. I. Nikolaev, A. V. Osipov, et al., “Epitaxial gallium oxide on a SiC/Si substrate,” Phys. Solid State 58, 1876–1881 (2016).

  27. Sh. Sh. Sharofidinov, S. A. Kukushkin, A. V. Red’kov, et al., “Growing III–V semiconductor heterostructures on SiC/Si substrates,” Tech. Phys. Lett. 45, 711–713 (2019).

Download references

ACKNOWLEDGMENTS

The authors are grateful to S. A. Kukushkin for suggesting the topic and useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Davydov.

Additional information

Translated by M.K. Katuev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydov, S.Y., Posrednik, O.V. Adsorption of Polar Molecules on a Solid Substrate. Mech. Solids 55, 90–93 (2020). https://doi.org/10.3103/S0025654420010082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654420010082

Keywords:

Navigation