Skip to main content
Log in

A method of inverse differential operators using ortogonal polynomials and special functions for solving some types of differential equations and physical problems

  • Theoretical and Mathematical Physics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

A general operational method, which is based on the developed technique of the inverse derivative operator, for solving a wide range of problems described by some classes of differential equations is represented. The inverse derivative operators for solving a number of differential equations are constructed and used. The operational identities are derived with the use of the inverse derivative operator, integral transformations, and generalized forms of orthogonal polynomials and special functions. Examples of solving various partial differential equations, such as equations of heat conduction and diffusion, as well as the Fokker-Planck equation, etc. are given. The application of the operational approach to solving a number of physical problems, among them problems related to the motion of charged particles in external field, is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Mikhailin, Phys.-Usp. 56, 412 (2013). doi 10.3367/UFNe.0183.201304i.0433

    Article  ADS  Google Scholar 

  2. G. N. Kulipanov, Phys.-Usp. 50, 368 (2007). doi 10.1070/PU2007v050n04ABEH006237.

    Article  ADS  Google Scholar 

  3. E. N. Ragozin and I. I. Sobelman, Phys.-Usp. 47, 195 (2004). doi 10.1070/PU2004v047n02ABEH001755.

    Article  ADS  Google Scholar 

  4. P. J. Duke, Synchrotron Radiation Production and Properties (New York, 2000).

    Google Scholar 

  5. G. Margaritondo and P. R. Ribic, J. Synchrotron Radiat. 18, 101 (2011).

    Article  Google Scholar 

  6. J. Feldhaus and B. Sonntag, in Strong Field Laser Physics, Ed. by T. Brabec (Springer, 2009), p. 91.

  7. K. V. Zhukovsky and V. V. Mikhailin, Vestn. Mosk. Univ. Ser. 3 Fiz. Astron. 2, 41 (2005). http://vmu.phys.msu.ru/abstract/2005/2/05-2-41

    Google Scholar 

  8. G. Dattoli, V. Mikhailin, P.-L. Ottaviani, and K. Zhukovsky, J. Appl. Phys. 100, 084507 (2006).

    Article  ADS  Google Scholar 

  9. K. V. Zhukovsky, Undulator Radiation in Multiple Magnetic Fields. Synchrotron: Design, Properties and Applications (Nova Science, New York, 2012).

    Google Scholar 

  10. K. V. Zhukovsky, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8, 422 (2014).

    Article  Google Scholar 

  11. K. V. Zhukovsky, Prog. Electromag. Res. B 59, 245 (2014).

    Article  Google Scholar 

  12. K. V. Zhukovsky, J. Electromagn. Waves Appl. 29, 132 (2015). doi 10.1080/09205071.2014.985854.

    Google Scholar 

  13. A. Appel and J. K. de Fériet, Functions Hypergéométriques et Hypersphériques; Polynomes d’Hermite (Gauthier-Villars, Paris, 1926).

    Google Scholar 

  14. G. Dattoli, J. Comput. Appl. Math. 118, 111 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  15. G. Dattoli, H. M. Srivastava, and K. Zhukovsky, J. Comput. Appl. Math. 182, 165 (2005).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. D. T. Haimo and C. Markett, J. Math. Anal. Appl. 168, 89 (1992).

    Article  MathSciNet  Google Scholar 

  17. D. T. Haimo and C. Markett, J. Math. Anal. Appl. 168, 89 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  18. K. V. Zhukovsky and D. Dattoli, Phys. At. Nucl. 71, 1807 (2008). doi 10.1134/S1063778808100153.

    Article  Google Scholar 

  19. G. Dattoli and K. Zhukovsky, Eur. Phys. J. C 50, 817 (2007).

    Article  ADS  Google Scholar 

  20. G. Dattoli and K. Zhukovsky, Eur. Phys. J. C 55, 547 (2008).

    Article  ADS  Google Scholar 

  21. G. Dattoli and K. Zhukovsky, Eur. Phys. J. C 52, 591 (2007).

    Article  ADS  Google Scholar 

  22. K. V. Zhukovskij, Vestn. Mosk. Univ. Ser. 3 Fiz. Astron. 3, 49 (2001). http://vmu.phys.msu.ru/abstract/2001/3/01-3-49

    ADS  Google Scholar 

  23. K. V. Zhukovsky, AIChE J. 49, 3029 (2003).

    Article  Google Scholar 

  24. K. Zhukovsky, AIChE J. 52, 2356 (2006).

    Article  Google Scholar 

  25. K. V. Zhukovskij and V. Ch. Zhukovskij, Vestn. Mosk. Univ. Ser. 3 Fiz. Astron. 5, 23 (2002).

    Google Scholar 

  26. K. Zhukovsky and A. Pozio, J. Power Sources 130, 95 (2004).

    Article  ADS  Google Scholar 

  27. A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vol. 2.

    Google Scholar 

  28. A. A. Kilbas and H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006).

    MATH  Google Scholar 

  29. K. Zhukovsky, Sci. World J. 2014, 454865 (2014). doi 10.1155/2014/454865.

    Article  Google Scholar 

  30. G. Dattoli, H. M. Srivastava, and K. V. Zhukovsky, Integral Transform. Spec. Funct. 17(1), 31 (2006).

    Article  MathSciNet  Google Scholar 

  31. G. Dattoli, H. M. Srivastava, and K. V. Zhukovsky, Appl. Math. Comput. 184, 979 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  32. I. M. Gelfand and G. E. Shalov, Generalized Functions and Actions with Them (Moscow, 1959) [in Russian].

    Google Scholar 

  33. H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions (Wiley, New York, 1984).

    MATH  Google Scholar 

  34. G. Dattoli, Lectures on Free Electron Lasers (Berlin, 1993).

    Book  Google Scholar 

  35. W. B. Colson, L. C. Gallardo, and P. M. Bosco, Phys. Rev. A 34, 4875 (1986).

    Article  ADS  Google Scholar 

  36. G. Dattoli, V. V. Mikhailin, and K. V. Zhukovsky, Moscow Univ. Phys. Bull. 64, 507 (2009). doi 0.3103/S0027134909050087. http://vmu.phys.msu.ru/abstract/2009/5/09-5-033

    Article  Google Scholar 

  37. K. Zhukovsky, J. Electromagn. Wave Appl. 28, 1869 (2014). doi 10.1080/09205071.2014.945664.

    Article  Google Scholar 

  38. K. V. Zhukovsky, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8, 1068 (2014).

    Article  Google Scholar 

  39. G. Dattoli, V. V. Mikhailin, and K. Zhukovsky, J. Appl. Phys. 104, 124507 (2008).

    Article  ADS  Google Scholar 

  40. K. B. Wolf, Integral Transforms in Science and Engineering (New York, 1979).

    Book  MATH  Google Scholar 

  41. H. W. Gould and A. T. Hopper, Duke Math. J. 29, 51 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  42. J. E. Avron and I. W. Herbst, Commun. Math. Phys. 52, 239 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  43. O. Vallee and M. Soares, Airy Functions and Application to Physics (London, 2004).

    Book  Google Scholar 

  44. K. V. Zhukovsky and G. Dattoli, Appl. Math. Comput. 217, 7966 (2011).

    Article  MathSciNet  Google Scholar 

  45. M. V. Berry and N. J. Balazs, Am. J. Phys. 47, 264 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Zhukovsky.

Additional information

Original Russian Text © K.V. Zhukovsky, 2015, published in Vestnik Moskovskogo Universiteta. Fizika, 2015, No. 2, pp. 19–26.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukovsky, K.V. A method of inverse differential operators using ortogonal polynomials and special functions for solving some types of differential equations and physical problems. Moscow Univ. Phys. 70, 93–100 (2015). https://doi.org/10.3103/S0027134915020137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134915020137

Keywords

Navigation