Skip to main content
Log in

Harmonic radiation in a double-frequency undulator with account for broadening

  • Theoretical and Mathematical Physics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

Undulator radiation (UR) was studied taking the broadening of spectral lines via homogeneous and nonhomogeneous contributions into account. Exact analytical expressions for the UR spectrum and intensity in the case of relativistic high-energy electrons were obtained. Analytical expressions that characterize the interrelation between the constant components of the magnetic field in undulators and the electron beam divergence within them were derived. These expressions suggest that this divergence may be partially compensated. The radiation of a double-frequency undulator and the higher harmonic radiation in an ordinary planar undulator were investigated taking the broadening of spectral lines into account. We discuss examples of UR in actual devices and demonstrate that the developed method and the results may be used in the calculation of induced UR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Ginzburg, Izv. Akad. Nauk SSSR, Ser. Fiz. 11, 1651 (1946).

    Google Scholar 

  2. H. Motz, W. Thon, and R. N. J. Whitehurst, Appl. Phys. 24, 826 (1953).

    Article  Google Scholar 

  3. A. A. Sokolov and I. M. Ternov, Relativistic Electron (Nauka, Moscow, 1983) [in Russian].

  4. J. Feldhaus and B. Sonntag, in Strong Field Laser Physics, Ed. by T. Brabec (Springer, 2009), p. 91.

  5. A. A. Zholents, Laser Phys. 115, 855 (2005).

    Google Scholar 

  6. E. N. Rogozin and I. I. Sobel’man, Phys.-Usp. 47, 195 (2004).

    Article  Google Scholar 

  7. V. V. Mikhailin, Synchrotron Radiation in Spectroscopy (Inst. Yad. Fiz., Moscow, 2011) [in Russian].

    Google Scholar 

  8. I. M. Ternov, V. V. Mikhailin, and V. R. Khalilov, Synchrotron Radiation and Its Applications (Mosk. Gos. Univ., Moscow, 1980) [in Russian].

    Google Scholar 

  9. A. L. Artsimovich and I. J. Pomeranchuk, J. Phys. USSR 9, 267 (1945).

    Google Scholar 

  10. D. F. Alferov, Yu. A. Bashmakov, and E. G. Bessonov, Sov. Phys. Tech. Phys. 17, 1540 (1973).

    ADS  Google Scholar 

  11. Synchrotron Radiation Theory and Its Development: In the Memory of I. Ternov, Ed. by V. A. Bordovitsyn (World Scientific, Singapore, 1999).

  12. A. A. Sokolov, A. V. Borisov, and V. Ch. Zhukovskii, Sov. Phys. J. 18, 1400 (1975).

    Article  Google Scholar 

  13. A. A. Sokolov, A. V. Borisov, D. V. Gal’tsov, and V. Ch. Zhukovskii, Sov. Phys. J. 17, 1835 (1974).

    Article  Google Scholar 

  14. V. G. Bagrov, G. S. Bisnovaty–Kogan, V. A. Bordovitsyn, A.V. Borisov, O. F. Dorofeev, V. Ya. Epp, Yu. L. Pivovarov, O. V. Shorokhov, and V. Ch. Zhukovsky, Radiation Theory of Relativistic Particles, Ed. by V. A. Bordovitsyn (Fizmatlit, Moscow, 2002) [In Russian].

  15. A. V. Borisov, V. A. Vshivtsev, and A. I. Ternov, Moscow Univ. Phys. Bull. 53, 8 (1998).

    Google Scholar 

  16. A. V. Borisov and I. A. Kelekhsaeva, Vestn. Mosk. Univ., Fiz., Astron. 28, 20 (1987).

    Google Scholar 

  17. A. V. Borisov and K. V. Zhukovsky, Phys. At. Nucl. 58, 1218 (1995).

    Google Scholar 

  18. A. V. Borisov and V. Yu. Grishina, J. Exp. Theor. Phys. 79, 837 (1994).

    ADS  Google Scholar 

  19. E. G. Bessonov, Proc. SPIE 6634, 66340X (2007).

  20. K. V. Zhukovsky and V. V. Mikhailin, Moscow Univ. Phys. Bull. 60, 50 (2005).

    Google Scholar 

  21. G. Dattoli, V. V. Mikhailin, P. L. Ottaviani, and K. Zhukovsky, J. Appl. Phys. 100, 084507 (2006).

    Article  ADS  Google Scholar 

  22. K. Zhukovsky, in Synchrotron: Design, Properties and Applications, Ed. by Dao Ming Chua and Huang Fu Toh (Nova Science, USA, 2012), p. 39.

  23. G. Dattoli, N. S. Mirian, E. DiPalma, and V. Petrillo, Phys. Rev. Spec. Top. Accel. Beams 17, 050702 (2014).

    Article  ADS  Google Scholar 

  24. D. F. Alferov, U. A. Bashmakov, and P. A. Cherenkov, Phys.-Usp. 32, 200 (1989).

    ADS  Google Scholar 

  25. R. P. Walker, Nucl. Instrum. Methods Phys. Res., Sect. A 335, 328 (1993).

    Article  ADS  Google Scholar 

  26. H. Onuki and P. Elleaume, Undulators, Wigglers and their Applications (Taylor and Francis, New York, 2003).

  27. H. R. Reiss, Phys. Rev. A 22, 1786 (1980).

    Article  ADS  Google Scholar 

  28. K. V. Zhukovsky, Prog. Electromagn. Res. B 59, 245 (2014).

    Article  Google Scholar 

  29. K. V. Zhukovsky, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8, 1068 (2014).

    Google Scholar 

  30. K. Zhukovsky, J. Electromagn. Waves Appl. 28, 1869 (2014).

    Article  Google Scholar 

  31. D. Dattoli, V. V. Mikhailin, and K. V. Zhukovsky, Moscow Univ. Phys. Bull. 64, 507 (2009).

    Article  Google Scholar 

  32. V. V. Mikhailin, K. V. Zhukovsky, and A. I. Kudiukova, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8, 422 (2014).

    Article  Google Scholar 

  33. G. Dattoli, V. V. Mikhailin, and K. V. Zhukovsky, J. Appl. Phys. 104, 124507 (2008).

    Article  ADS  Google Scholar 

  34. G. Dattoli, Lectures on the Free Electron Laser Theory and Related Topics (World Scientific, Singapore, 1993).

    Book  Google Scholar 

  35. K. V. Zhukovsky, J. Electromagn. Waves Appl. 29, 132 (2015).

    Google Scholar 

  36. L. D. Landau and E. M. Lifshits, The Classical Theory of Fields, 4th ed. (Pergamon, New York, 1975).

    Google Scholar 

  37. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975).

    MATH  Google Scholar 

  38. W. B. Colson, C. Pellegrini, and A. Renieri, Laser Handbook (North Holland, Amsterdam, 1993), Vol. VI.

  39. G. Dattoli, P.-L. Ottaviani, and S. Pagnutti, Booklet for FEL Design: A Collection of Practical Formulae, (ENEA, Rome, 2007).

    Google Scholar 

  40. K. V. Zhukovsky, Moscow Univ. Phys. Bull. 70, 93 (2015).

    Article  ADS  Google Scholar 

  41. K. Zhukovsky, Sci. World J. 2014, 454865 (2014).

    Article  Google Scholar 

  42. G. Mishra, M. Gehlot, and J.-K. Hussain, Nucl. Instrum. Methods Phys. Res., Sect. A 603, 495 (2009).

    Article  ADS  Google Scholar 

  43. J. Hussain, V. Gupta, and G. Mishra, Nucl. Instrum. Methods Phys. Res., Sect. A 608, 344 (2009).

    Article  ADS  Google Scholar 

  44. N. S. Mirian, G. Dattoli, E. di Palma, and V. Petrillo, Nucl. Instrum. Methods Phys. Res., Sect. A 767, 227 (2014).

    Article  ADS  Google Scholar 

  45. H. Jeevakhan and G. Mishra, Nucl. Instrum. Methods Phys. Res., Sect. A 656, 101 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Zhukovsky.

Additional information

Original Russian Text © K.V. Zhukovsky, 2015, published in Vestnik Moskovskogo Universiteta. Fizika, 2015, No. 4, pp. 18–25.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukovsky, K.V. Harmonic radiation in a double-frequency undulator with account for broadening. Moscow Univ. Phys. 70, 232–239 (2015). https://doi.org/10.3103/S0027134915040177

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134915040177

Keywords

Navigation