Skip to main content
Log in

Mathematical modeling of randomness and fuzziness phenomena in scientific studies: I. Mathematical and empirical foundations

  • Theoretical and Mathematical Physics (Review)
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The possibility theory as a mathematical model of randomness and fuzziness phenomena is considered in a variant that enables the modeling of both probabilistic randomness, including that inherent in unpredictably evolving stochastic objects whose probabilistic models cannot be empirically reconstructed and nonprobabilistic randomness (fuzziness) inherent in real physical, technical, and economical objects, human–machine and expert systems, etc. Some principal distinctions between the considered variant and the known possibility theory variants, in particular, in mathematical formalism and its relationship with probability theory, substantive interpretation, and applications exemplified by solving the problems of identification and estimation optimization, empirical reconstruction of a fuzzy model for a studied object, measurement data analysis and interpretation, etc. (in the paper “Mathematical Modeling of Randomness and Fuzziness Phenomena in Scientific Studies. II. Applications”) are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Choquet, Ann. Inst. Fourier 5, 131 (1953–1954).

    Article  Google Scholar 

  2. L. A. Zadeh, Inf. Control 8, 235 (1965).

    Article  Google Scholar 

  3. A. P. Dempster, Ann. Math. Stat. 38, 325 (1967).

    Article  Google Scholar 

  4. A. P. Dempster, J. R. Stat. Soc. B 30, 205 (1968).

    Google Scholar 

  5. L. J. Savage, The Foundations of Statistics (Dover, New York, 1972).

    MATH  Google Scholar 

  6. M. Sugeno, PhD Thesis (Tokyo Inst. of Technology, Tokyo, 1974).

    Google Scholar 

  7. G. Shafer, A Mathematical Theory of Evidence (Princeton Univ. Press, 1976).

    MATH  Google Scholar 

  8. L. A. Zadeh, Fuzzy Sets Syst., No. 1, 3 (1978).

    Article  Google Scholar 

  9. S. A. Orlovskii, Problems of Decision-Making under Uncertain Original Information (Nauka, Moscow, 1981).

  10. Fuzzy Sets and Possibility Theory. Recent Developments, Ed. by P. P. Yager (Pergamon Press, 1982).

  11. Fuzzy Sets in Control and Artificial Intelligence Models, Ed. by D. A. Pospelov (Nauka, Moscow, 1986).

  12. D. Dubois and H. Prade, Theorie des Possibilites (Masson, 1988).

    Book  MATH  Google Scholar 

  13. Yu. P. Pyt’ev, Pattern Recognit. Image Anal. 4, 177 (1994).

    Google Scholar 

  14. Yu. P. Pyt’ev, Pattern Recognit. Image Anal. 5, 13 (1995).

    Google Scholar 

  15. G. de Cooman and E. E. Kerre, Fuzzy Sets Syst. 77, 207 (1996).

    Article  Google Scholar 

  16. G. de Cooman, Int. J. Gen. Syst. 25, 291 (1997).

  17. G. de Cooman, Int. J. Gen. Syst. 25, 325 (1997).

  18. G. de Cooman, Int. J. Gen. Syst. 25, 353 (1997).

  19. Yu. P. Pyt’ev, Pattern Recognit. Image Anal. 7, 338 (1997).

  20. D. Dubois and H. Prade, in Quantified Representation of Uncertainty and Imprecision, Ed. by D. M. Gabbay and P. Smets (Springer, 1998), p. 169.

  21. O. Wolkenhauer, Possibility Theory with Applications to Data Analysis (Research Studies Press, 1998).

    MATH  Google Scholar 

  22. Applied Fuzzy Systems, Ed. by T. Terano, K. Asai, and M. Sugeno (Elsevier, 1989).

  23. Yu. P. Pyt’ev, Pattern Recognit. Image Anal. 8, 1 (1998).

    Google Scholar 

  24. Yu. P. Pyt’ev, Pattern Recognit. Image Anal. 9, 416 (1999).

    Google Scholar 

  25. D. Dubois, H. T. Nguyen, and H. Prade, in Fundamentals of Fuzzy Sets, Ed. by D. Dubois and H. Prade (Kluwer Academic Publishers, Boston, 2000), p. 343.

  26. Yu. P. Pyt’ev, Pattern Recognit. Image Anal. 10, 43 (2000).

    Google Scholar 

  27. Yu. P. Pyt’ev, Pattern Recognit. Image Anal. 10, 447 (2000).

    Google Scholar 

  28. Yu. P. Pyt’ev, Possibility. Elements of Theory and Applications (Editorial URSS, Moscow, 2000).

    Google Scholar 

  29. D. Dubois, H. Prade, and S. Sandri, in Proc. 4th IFSA Congress, Brussels, Belgium, 1991 (Kluwer Academic Publishers, 1993), p. 103.

    Google Scholar 

  30. I. V. D’yakonova, T. V. Matveeva, and Yu. P. Pyt’ev, Pattern Recognit. Image Anal. 11, 711 (2001).

    Google Scholar 

  31. Yu. P. Pyt’ev, Intellekt. Sist. 6, 25 (2001).

    Google Scholar 

  32. Yu. P. Pyt’ev, Pattern Recognit. Image Anal. 12, 107 (2002).

    Google Scholar 

  33. Yu. P. Pyt’ev and O. V. Zhucko, Pattern Recognit. Image Anal. 12, 116 (2002).

    Google Scholar 

  34. T. V. Matveeva and Yu. P. Pyt’ev, Pattern Recognit. Image Anal. 12, 316 (2002).

    Google Scholar 

  35. Yu. P. Pyt’ev, Pattern Recognit. Image Anal. 12, 376 (2002).

    Google Scholar 

  36. Yu. P. Pyt’ev and I. V. Mazaeva, Moscow Univ. Phys. Bull. 57 (5), 27 (2002).

    Google Scholar 

  37. Yu. P. Pyt’ev and G. S. Zhivotnikov, Pattern Recognit. Image Anal. 14, 60 (2004).

    Google Scholar 

  38. Yu. P. Pyt’ev, Pattern Recognit. Image Anal. 14, 529 (2004).

    Google Scholar 

  39. Yu. P. Pyt’ev, Intellekt. Sist. 8, 147 (2004).

    Google Scholar 

  40. Yu. P. Pyt’ev, Pattern Recognit. Image Anal. 14, 541 (2004).

    Google Scholar 

  41. Yu. P. Pyt’ev, Pattern Recognit. Image Anal. 16 (3), 1 (2006).

    Google Scholar 

  42. D. Dubois, Comput. Stat. Data Anal. 51, 47 (2006).

    Article  Google Scholar 

  43. G. De Campos and J. F. Huete, Int. J. Gen. Syst. 30, 309 (2001).

    Article  Google Scholar 

  44. M. Masson and T. Denoeux, Fuzzy Sets Syst. 157, 319 (2006).

    Article  Google Scholar 

  45. Yu. P. Pyt’ev, Intellekt. Sist. 11, 277 (2007).

    MathSciNet  Google Scholar 

  46. D. Dubois and H. Prade, in Decision Making Process: Concepts and Methods, Ed. by D. Bouyssou, D. Dubois, M. Pirlot, and H. Prade (Wiley-ISTE, London, 2009), p. 85.

  47. S. S. Papilin and Yu. P. Pyt’ev, Math. Models Comput. Simul. 3, 528 (2011).

    Article  MathSciNet  Google Scholar 

  48. S. S. Papilin and Yu. P. Pyt’ev, Math. Models Comput. Simul. 3, 528 (2011).

    Article  MathSciNet  Google Scholar 

  49. R. R. Yager, IEEE Trans. Fuzzy Syst. 20, 46 (2012).

    Article  Google Scholar 

  50. R. R. Yager, IEEE Trans. Fuzzy Syst. 20, 526 (2012).

    Article  Google Scholar 

  51. Yu. P. Pyt’ev, Possibility as an Alternative to Probability, 2nd ed. (Fizmatlit, Moscow, 2016).

    Google Scholar 

  52. Yu. P. Pyt’ev, Math. Models Comput. Simul. 5, 538 (2013).

    Article  MathSciNet  Google Scholar 

  53. Yu. P. Pyt’ev, Math. Models Comput. Simul. 5, 538 (2013). doi 10.1134/S2070048213060094

    Article  MathSciNet  Google Scholar 

  54. R. L. Kashyap and A. R. Rao, Dynamic Stochastic Models from Empirical Data (Academic Press, 1983).

    Google Scholar 

  55. Yu. A. Rozanov, Probability Theory, Stochastic Processes, and Mathematical Statistics (Fizmatlit, Moscow, 1985).

    MATH  Google Scholar 

  56. Yu. P. Pyt’ev, Autom. Remote Control 71, 486 (2010).

    Article  MathSciNet  Google Scholar 

  57. G. J. Klir, Uncertainty and Information: Foundations of Generalized Information Theory (Wiley-IEEE Press, 2005).

    Book  MATH  Google Scholar 

  58. W. Hoeffding, J. Am. Stat. Assoc. 58, 213 (1963).

    Article  Google Scholar 

  59. Yu. P. Pyt’ev, Mathematical Modeling of Measuring and Computing Systems, 3rd ed. (Fizmatlit, Moscow, 2011).

    Google Scholar 

  60. P. J. Huber, Robust Statistics (Wiley-Interscience, 1981).

    Book  MATH  Google Scholar 

  61. A. I. Orlov, Applied Statistics (Ekzamen, Moscow, 2004).

    Google Scholar 

  62. http://studopedia.ru.

  63. Yu. P. Pyt’ev, Math. USSR-Sbornik 46, 17 (1983).

    Article  Google Scholar 

  64. V. F. Dem’yanov and V. N. Malozemov, Introduction to Minimax Theory (Nauka, Moscow, 1972).

    MATH  Google Scholar 

  65. Yu. P. Pyt’ev, Moscow Univ. Phys. Bull. 52 (3), 1 (1997). http://vmu.phys.msu.ru/file/1997/3/en-97- 52-3-001.pdf.

    Google Scholar 

  66. Yu. P. Pyt’ev, Vestn. Mosk. Univ., Ser. 3: Fiz. Astron. No. 4, 3 (1997).

    Google Scholar 

  67. Yu. P. Pyt’ev, Vestn. Mosk. Univ., Ser. 3: Fiz. Astron. No. 6, 3 (1997).

    Google Scholar 

  68. Yu. P. Pyt’ev, Moscow Univ. Phys. Bull. 53 (1), 1 (1998). http://vmu.phys.msu.ru/file/1998/1/en-98- 53-1-001.pdf.

    Google Scholar 

  69. Yu. P. Pyt’ev, Moscow Univ. Phys. Bull. 53 (2), 1 (1998).

    Google Scholar 

  70. Yu. P. Pyt’ev, Moscow Univ. Phys. Bull. 54 (5), 1 (1999). http://vmu.phys.msu.ru/file/1999/5/en-99- 54-5-001.pdf.

    MathSciNet  Google Scholar 

  71. Yu. P. Pyt’ev, Moscow Univ. Phys. Bull. 54 (6), 1 (1999). http://vmu.phys.msu.ru/file/1999/6/en-99- 54-6-001.pdf.

    MathSciNet  Google Scholar 

  72. Yu. P. Pyt’ev, Moscow Univ. Phys. Bull. 53 (6), 1 (1998). http://vmu.phys.msu.ru/file/1998/6/en-98- 53-6-001.pdf.

    MathSciNet  Google Scholar 

  73. Yu. P. Pyt’ev, Moscow Univ. Phys. Bull. 54 (1), 1 (1999). http://vmu.phys.msu.ru/file/1999/1/en-99- 54-1-001.pdf.

    Google Scholar 

  74. G. De Cooman and D. Aeyels, IEEE Trans. Syst., Man, Cybern. 30, 124 (2000).

    Article  Google Scholar 

  75. H. T. Nguyen and B. Bouchon-Meunier, Soft Comput. 8, 61 (2003).

    Article  Google Scholar 

  76. Yu. P. Pyt’ev and I. V. Mazaeva, Moscow Univ. Phys. Bull. 57 (5), 27 (2002). http://vmu.phys.msu.ru/file/2002/5/en-02-57-5- 027.pdf.

    Google Scholar 

  77. Yu. P. Pyt’ev, Moscow Univ. Phys. Bull. (in press).

  78. Yu. P. Pyt’ev, Autom. Remote Control 71, 486 (2010).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. P. Pyt’ev.

Additional information

Original Russian Text © Yu.P. Pyt’ev, 2017, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2017, No. 1, pp. 3–16.

An object whose model is a certain probabilistic space at any moment is called stochastic.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pyt’ev, Y.P. Mathematical modeling of randomness and fuzziness phenomena in scientific studies: I. Mathematical and empirical foundations. Moscow Univ. Phys. 72, 1–15 (2017). https://doi.org/10.3103/S002713491701012X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S002713491701012X

Keywords

Navigation