Skip to main content
Log in

Plant genetic transformation using carbon nanotubes for DNA delivery

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

The possibility of using nanocarriers based on carbon nanotubes (CNTs) to deliver genetic material into mesophyll protoplasts, callus cells, and leaf explants is discussed. Using single-walled CNTs (SWCNTs) at the concentration of 20 μg/mL and multiwalled CNTs (MWCNTs) at the concentration of 15 μg/mL, the Nicotiana tabacum L. protoplasts were genetically transformed with the plasmid construct pGreen 0029, and a transient expression of the yfp reporter gene was shown in the protoplasts. Using SWCNTs at the concentration of 40 μg/mL and MWCNTs at the concentration of 30 μg/mL, the N. tabacum callus and leaf explants were genetically transformed by the nptII gene contained in the pGreen 0029 construct and regenerant plants were obtained on a selective medium with kanamycin at the concentration of 50 mg/L. The SWCNTs-based nanocarriers demonstrated their applicability for the transformation of protoplasts and walled plant cells. At the same time, the MWCNTs-based nanocarriers demonstrated their applicability only for the transformation of protoplasts, because of a limiting role of the cellulose wall against their penetration into the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, Q., Chen, B., Wang, Q., et al., Carbon nanotubes as molecular transporters for walled plant cells, Nano Lett, 2009, vol. 9, no. 3, pp. 1007–1010.

    Article  CAS  PubMed  Google Scholar 

  2. Serag, M.F., Kaji, N., Habuchi, S., et al., Nanobiotechnology meets plant cell biology: carbon nanotubes as organelle targeting nanocarriers, ACS Nano, 2013, vol. 12, pp. 115–123.

    Google Scholar 

  3. Serag, M.F., Kaji, N., Venturelli, E., et al., Functional platform for controlled subcellular distribution of carbon nanotubes, ACS Nano, 2011, vol. 5, no. 11, pp. 9264–9270.

    Article  CAS  PubMed  Google Scholar 

  4. Podesta, J.E., Alpjamal K.T., Herrero M.A. et al. antitumor activity and prolonged survival by carbon-nanotube-mediated therapeutic siRNA silencing in a human ling xenograft model, Small, 2009, vol. 5, pp. 1176–1185.

    Article  CAS  PubMed  Google Scholar 

  5. Ali-Boucetta, H., Al-Jamal, K.T., McCarthy, D., et al., Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics, Chem. Commun., 2008, vol. 4, pp. 459–461.

    Article  Google Scholar 

  6. Bhirde, A., Patel, V., Gavard, J., et al., Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery, ACS nano, 2009, vol. 3, pp. 307–316.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Burlaka, O.M., Pirko, Ya.V., Yemets, A.I., and Blume, Ya.B., Carbon nanotubes and their use for genetic transformation of plants, Nanostrukt. Materialoved., 2011, vol. 2, pp. 84–101.

    Google Scholar 

  8. Rafsanjani, M.S.O., Alvari, A., Samim, M., et al., Application of novel nanotechnology strategies in plant biotransformation: a contemporary overview, Recent Pat. Biotechnol., 2012, vol. 6, pp. 69–79.

    Article  CAS  PubMed  Google Scholar 

  9. Liu, Y., Wu, D.C., Zhang, W.D., et al., Polyethyleniminegrafted multiwalled carbon nanotubes for secure non-covalent immobilization and efficient delivery of DNA, Angew. Chem. Int. Edn., 2005, vol. 44, no. 30, pp. 4782–4785.

    Article  CAS  Google Scholar 

  10. Singh, R., Pantarotto, D., McCarthy, D.O., et al., Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors, J. Am. Chem. Soc., 2005, vol. 127, pp. 4388–4396.

    Article  CAS  PubMed  Google Scholar 

  11. Pantarotto, D., Singh, R., McCarthy, D., et al., Functionalized carbon nanotubes for plasmid gene DNA delivery, Angew. Chem., Int. Ed. Engl., 2004, vol. 43, pp. 5242–5246.

    Article  CAS  Google Scholar 

  12. Herrero, M.A., Toma, F.M., Al-Jamal, K.T., et al., Synthesis and characterization of a carbon nanotubedendron series for efficient siRNA delivery, J. Am. Chem. Soc., 2009, vol. 131, pp. 9843–9848.

    Article  CAS  PubMed  Google Scholar 

  13. Kam, N.W.S. and Dai, H., Carbon nanotubes as intracellular protein transporters: generality and biological functionality, J. Am. Chem. Soc., 2005, vol. 127, pp. 6021–6026.

    Article  CAS  PubMed  Google Scholar 

  14. Rojas-Chapana, J., Troszczynska, J., Firkowska, I., et al., Multi-walled carbon nanotubes for plasmid delivery into E. coli cells, Lab. Chip, 2005, vol. 5, pp. 536–539.

    Article  CAS  PubMed  Google Scholar 

  15. Raffa, V., Vittorio, O., Costa, M., et al., Multiwalled carbon nanotube antennas induce effective plasmid DNA transfection of bacterial cells, J. Nanoneurosci., 2012, vol. 2, no. 1, pp. 56–62.

    Article  Google Scholar 

  16. Mattos, I.B., Alvews, D.A., Hollanda, L.M., et al., Effects of multi-walled carbon nanotubes (MWCNT) under Neisseria meningitides transformation process, J. Nanobiotechnol., 2011, vol. 9, p. 53.

    Article  CAS  Google Scholar 

  17. Nunes, A., Amsharov, N., Guo, C., et al., Hybrid polymer-grafted multiwalled carbon nanotubes for in vitro gene delivery, Small, 2010, vol. 6, no. 20, pp. 2281–2291.

    Article  CAS  PubMed  Google Scholar 

  18. Serag, M.F., Kaji, N., Gaillard, C., et al., Trafficking and subcellular localization on multiwalled carbon nanotubes in plant cells, ACS Nano, 2011, vol. 5, no. 1, pp. 493–499.

    Article  CAS  PubMed  Google Scholar 

  19. Yuan, H., Hu, S., Haung, P., et al., Single walled carbon nanotubes exhibit dual-phase regulation to exposed Arabidopsis mesophyll cells, Nanoscale Res. Lett., 2011, vol. 6, p. 44.

    PubMed Central  Google Scholar 

  20. Serag, M.F., Kaji, N., Tokeshiac, M., and Baba, Y., Introducing carbon nanotubes into living walled plant cells through cellulose-induced nanoholes, RSC Adv., 2012, vol. 2, pp. 398–400.

    Article  CAS  Google Scholar 

  21. Dresselhaus, M.S., Dresselhaus, G., and Avouris, P., Carbon Nanotubes: Synthesis, Structure, Properties and Applications, Berlin: Springer, 2001.

    Google Scholar 

  22. Saito, R., Dresselhaus, G., and Dresselhaus, M.S., Physical Properties of Carbon Nanotubes, London: Imper. Coll. Press, 1998.

    Google Scholar 

  23. Karousis, N., Tagmatarchis, N., and Rasis, D., Current progress on the chemical modification of carbon nanotubes, Chem. Rev., 2010, vol. 110, no. 9, pp. 5366–5397.

    Article  CAS  PubMed  Google Scholar 

  24. Kharisov, B.I., Kharissova, O.V., Gurierre, H.L., and Mendez, U.O., Recent advances on the soluble carbon nanotubes, Ind. Eng. Chem. Res., 2009, vol. 48, pp. 572–590.

    Article  CAS  Google Scholar 

  25. Burlaka, O.M., Pirko, Ya.V., Smertenko, P.S., et al., Functionalization of carbon nanotubes using molecules of biological origin of various nature, Dop. NAN Ukraini, 2015, vol. 2, pp. 137–144.

    Google Scholar 

  26. Inoue, H., Nojima, H., and Okayama, H., High efficiency transformation of Escherichia coli with plasmids, Gene, 1990, vol. 96, pp. 23–28.

    Article  CAS  PubMed  Google Scholar 

  27. Hunter, P.R., Craddock, C.P., di Benedetto, S., et al., Fluorescent reporter proteins for the tonoplast and the vacuolar lumen identify a single vacuolar compartment in Arabidopsis cells, Plant Physiol., 2007, vol. 145, pp. 1371–1382.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: a Laboratory Manual, New York: Cold Spring Harbor Lab. Press, 1989.

    Google Scholar 

  29. Lee, S.Y. and Rasheed, S., A simple procedure for maximum yield of high-quality plasmid DNA, BioTechniques, 1990, vol. 9, no. 6, pp. 676–679.

    CAS  PubMed  Google Scholar 

  30. Murashige, T. and Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant., 1962, vol. 15, pp. 473–497.

    Article  CAS  Google Scholar 

  31. Nagy, J.I. and Maliga, P., Callus induction and plant regeneration from mesophyll protoplasts of Nicotiana sylvestris, Z. Pflanzenphysiol., 1976, vol. 78, pp. 453–544.

    Article  Google Scholar 

  32. Yemets, A.I., Kundelchuk, O.P., Smertenko, A.P., et al., Transfer of amiprophosmethyl resistance from a Nicotiana plumbaginifolia mutant by somatic hybridization, Theor. Appl. Genet., 2000, vol. 100, pp. 847–857.

    Article  CAS  Google Scholar 

  33. Potrykus, I. and Shillito, R.D., Protoplasts: isolation, culture, plant regeneration, Methods Enzymol., 1986, vol. 118, pp. 549–578.

    Article  CAS  Google Scholar 

  34. Kao, K.N. and Michayluk, M.R., Nutritional requirements for growth of Vicia hajastana cells and protoplasts at a very low population density in liquid media, Planta, 1975, vol. 126, pp. 105–110.

    Article  CAS  PubMed  Google Scholar 

  35. Basic cell culture methods: determination of cell number. wwwmolbiolru/protocol/19_01html

  36. Lakin, G.F., Biometriya (Biometry), Moscow: Vyssh. Shk., 1990.

    Google Scholar 

  37. Yang, W., Thordarson, P., Gooding, J.J., et al., Carbon nanotubes for biological and biomedical applications, Nanotechnology, 2007, vol. 18, p. 412001.

    Article  Google Scholar 

  38. Chen, J., Chen, Q., and Ma, Q., Influence of surface functionalization via chemical oxidation on the properties of carbon nanotubes, Thin Solid Films, 2012, vol. 370, no. 1, pp. 32–38.

    CAS  Google Scholar 

  39. Ramos-Perez, V., Cifuentes, A., Coronas, N., et al., Modification of carbon nanotubes for gene delivery vectors, in Nanomaterial Interfaces in Biology: Methods and Protocols. Methods in Molecular Biology, Bergese, P. and Hamad-Schifferli, K., Eds., New York: Springer Sci., 2013, vol. 1025, pp. 261–269.

    Article  CAS  Google Scholar 

  40. Tasis, D., Tagmatarchis, N., Bianco, A., and Prato, M., Chemistry of carbon nanotubes, Chem. Rev., 2006, vol. 106, pp. 1105–1136.

    Article  CAS  PubMed  Google Scholar 

  41. Wu, Y., Phillips, J.A., Liu, H., et al., Carbon nanotubes protect DNA strands during cellular delivery, ACS Nano, 2008, vol. 2, no. 10, pp. 2023–2028.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Kalinin, F.L., Sarnatskaya, V.V., and Polishchuk, V.E., Metody kul’tury tkani v fiziologii i biokhimii rastenii (Tissue Culture Methods in Plant Physiology and Biochemistry), Kiev: Nauk. Dumka, 1980.

    Google Scholar 

  43. Lin, S., Reppert, J., Hu, Q., et al., Uptake, translocation, and transmission of carbon nanomaterials in rice plants, Sma, 2009, vol. 5, pp. 1128–1132.

    CAS  Google Scholar 

  44. Khodakovskaya, M., Dervishi, E., Mahmood, M., et al., Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth, ACS Nano, 2009, vol. 3, no. 10, pp. 3221–3227.

    Article  CAS  PubMed  Google Scholar 

  45. Tripathi, S., Sonkar, S.K., and Sarkar, S., Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes, Nanoscale, 2011, vol. 3, pp. 1176–1181.

    Article  CAS  PubMed  Google Scholar 

  46. Tan, X.M., Lin, C., and Fugetsu, B., Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells, Carbon, 2009, vol. 47, no. 15, pp. 3479–3487.

    Article  CAS  Google Scholar 

  47. Lin, C., Fugetsu, B., Su, Y., and Watari, F., Studies on toxicity of multi-walled carbon nanotubes on Arabidopsis N87 suspension cells, J. Hazard. Mater., 2009. vol. 170, nos. 2/3, pp. 578–583.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Burlaka.

Additional information

Original Ukrainian Text © O.M. Burlaka, Ya.V. Pirko, A.I. Yemets, Ya.B. Blume, 2015, published in Tsitologiya i Genetika, 2015, Vol. 49, No. 6, pp. 3–12.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burlaka, O.M., Pirko, Y.V., Yemets, A.I. et al. Plant genetic transformation using carbon nanotubes for DNA delivery. Cytol. Genet. 49, 349–357 (2015). https://doi.org/10.3103/S009545271506002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S009545271506002X

Keywords

Navigation