Skip to main content
Log in

Digital Manufacturing Security Indicators

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract—

This paper describes security indicators specific to digital manufacturing. We divided the set of indicators into three groups: self-similarity-based security indicators, sustainability indicators, and indicators characterizing the homeostatic ability of cyberphysical systems that form the basis of digital production. Indicators can be applied to any type of digital production systems to detect security problems, control the sustainability of their operation, and maintain resilience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Zegzhda, D.P., Poltavtseva, M.A., and Lavrova, D.S., Systematization and security assessment of cyber-physical systems, Autom. Control Comput. Sci., 2017, vol. 51, no. 8, pp. 835–843.

    Article  Google Scholar 

  2. Zegzhda, D.P. and Pavlenko, E.Yu., Cyber-physical system homeostatic security management, Autom. Control Comput. Sci., 2017, vol. 51, no. 8, pp. 805–816. https://doi.org/10.3103/S0146411617080260

    Article  Google Scholar 

  3. Zegzhda, D.P. and Pavlenko, E.Yu., Cyber-physical system homeostatic security management, Probl. Inf. Bezop., Komp’yut. Sist., 2017, no. 3, pp. 9–22.

  4. Diosdado, A., Ramirez-Hernandez, L., et al., Multifractal analysis and the NYHA index, AIP Conference Proceedings, 2014, vol. 1626, no. 1, pp. 155–158.

    Article  Google Scholar 

  5. Fractals in Biology and Medicine, Nonnenmacher, T.F., Losa, G.A., and Weibel, E.R., Eds., Birkhäuser, 2013.

    Google Scholar 

  6. Takayasu, H., Fractal properties in economics, in Paradigm of Complexity, Novak, M.M., Ed., World Scientific, 2000, pp. 243–258.

    Google Scholar 

  7. Dimri, V.P., Fractals in geophysics and seismology: An introduction, in Fractal Behaviour of the Earth System, Springer Berlin Heidelberg, 2005, pp. 1–22.

    Book  Google Scholar 

  8. Smirnova, N.A., et al., Fractal approach to search for the earthquake precursory signatures in geophysical time series, Proceedings of the 8th International Conference Problems of Geocosmos, St. Petersburg, 2010, pp. 433–438.

  9. Jingwen, L., Fractal modeling of logistics enterprise spatial organization, IEEE 2011 International Conference on E-Business and E-Government (ICEE), 2011, pp. 1–4.

  10. Wang, Y., Luo, Y.J., and Peng, Y.L., Study the logistics financial management of supply chain system engineering based on the fractal theory, IEEE 4th International Conference on Wireless Communications, Networking and Mobile Computing, 2008. WICOM'08, 2008, pp. 1–8.

  11. Florea, G., et al., A fractal model for power smart grids, IEEE 2015 20th International Conference on Control Systems and Computer Science (CSCS), 2015, pp. 572–577.

  12. Retière, N., et al., Fractal grid—towards the future smart grid, CIRED 2017—24th International Conference on Electricity Distribution, 2017, p. 1236.

  13. Pavlenko, E.Yu., Yarmak, A.V., and Moskvin, D.A., Hierarchical approach to analyzing security breaches in information systems, Autom. Control Comput. Sci., 2017, vol. 51, no. 8, pp. 829–834.

    Article  Google Scholar 

  14. Trenogin, N.G. and Sokolov, D.E., Fractal properties of network traffic in a client-server information system, Vestn. Nauchno-Issled. Inst. Sib. Gos. Univ. Telekommun. Inf., 2003, pp. 163–172.

  15. Petrov, V.V. and Platov, V.V., Study of the self-similar structure of the teletraffic of a wireless network, Radiotekh. Tetradi, 2004, no. 30, pp. 58–62.

  16. Lavrova, D.S., An approach to developing the SIEM system for the Internet of Things, Probl. Inf. Bezop., Komp’yut. Sist., 2016, no. 2, pp. 50–60.

  17. Lavrova, D.S., An approach to developing the SIEM system for the Internet of Things, Autom. Control Comp. Sci., 2016, vol. 50, p. 673. https://doi.org/10.3103/S0146411616080125

    Article  Google Scholar 

  18. Loskutov, A.Yu., Analysis of time series. Lecture course. http://chaos.phys.msu.ru/loskutov/PDF/Lectures_ time_ series_analysis.pdf. Accessed May 14, 2018.

  19. Filimonov, A.V., Multifractal time series models, Preprint P1/2010 of Nizhny Novgorod Branch State Univ. Higher Sch. Econ., Nizhny Novgorod, 2010.

    Google Scholar 

  20. Shelukhin, O.I. and Osin, A.V., Multifractal properties of real-time traffic, Elektrotekh. Inf. Kompleksy Sist., 2006, vol. 2, no. 3.

  21. Mandelbrot, B.B., Intermittent turbulence in self similar cascades: Divergence of high moments and dimension of the carrier, J. Fluid. Mech., 1974, vol. 62, no. 331.

  22. Shelukhin, O.I., Tenyakshev, A.M., and Osin, A.V., Fractal Processes in Telecommunications, Shelukhin, O.I., Ed., Moscow: Radiotekhnika, 2003.

    Google Scholar 

  23. Fisher, A., Calvet, L., and Mandelbrot, B.B., Multifractality of Deutschmark/US Dollar Exchanges Rates, Yale University, 1997.

    Google Scholar 

  24. Riedi, R.H., Multifractal processes, in Theory and Applications of Long Range Dependence, Doukhan, P., Oppenheim, G., and Taqqu, M.S., Eds., Boston: Birkhäuser, 2002.

    Google Scholar 

  25. Zegzhda, P.D., Lavrova, D.S., and Shtyrkina, A.A., Multifractal analysis of Internet backbone traffic for detecting denial of service attacks, Probl. Inf. Bezop., Komp’yut. Sist., 2018, no.2, pp. 127–138.

  26. Medvednikova, M.M., Using the method of principal components in the construction of integral indicators, Mash. Obuchenie Anal. Dannykh, 2012, vol. 3, pp. 292–304.

    Google Scholar 

  27. Maslovskaya, A.G. and Barabash, T.K., Wavelet-multifractal analysis of electron current-induced polarization reversal of ferroelectric crystals, Vestn. Sarat. Gos. Tekh. Univ., 2011, no. 4.

  28. Beran, J., Statistics for Long-Memory Processes, Chapman and Hall, 1994.

    MATH  Google Scholar 

  29. Borovikov, I.M., Kulikova, T.V., and Tinyakova, V.I., Matematicheskie metody v ekonomike (Mathematical Methods in Economics), 2011.

    Google Scholar 

  30. Melekhov, A.P., Prozorov, O.A., Revina, S.V., and Sazonov, L.I., Uchebno-metodicheskoe posobie Postroenie fazovykh portretov dinamicheskikh sistem. Teoriya i programmnaya realizatsiya po kursu Differentsial’nye uravneniya (Teaching Manual: Constructing Phase Portraits of Dynamical Systems. Theory and Software Implementation of the Course in Differential Equations).

  31. Equilibrium Positions of Linear Autonomous Systems. https://www.math24.ru/пoлoжeния-paвнoвecия-линeйныx-aвтoнoмныx-cиcтeм.html. Accessed May 14, 2018.

  32. Fundamentals of Control Theory: Methodological Guidelines for the Implementation of Practical Tasks for Bachelors in the Training Program 09.03.01: Informatics and Computer Engineering. http://skibiit.ru/sveden/ docum/metod/09.03.01/LabRab/metod_OsnTeorUp(l.r.)_09.03.01.pdf. Accessed May 14, 2018.

  33. Krivosheev, V.P., Osnovy teorii upravleniya. Chast’ 1 (konspekt lektsii) (Fundamentals of Control Theory. Part 1) (Lecture Notes), Il’in, A.A., Ed. https://abc.vvsu.ru/books/l_osnteor1/page0030.asp. Accessed May 14, 2018.

  34. Antipov, S. and Fomina, M., The problem of detecting anomalies in time series sets, Program. Prod. Sist., 2012, no. 2, pp. 78–82.

  35. Sharpaev, A.K., Tools for predicting market conditions for textile products using the Kalman intelligent filter, Cand. Sci. (Econ.). Dissertation, Smolensk, 2010.

  36. Takens, F., Lect. Notes Math., 1981, vol. 898, pp. 366–381.

    Article  Google Scholar 

  37. Farmer, J.D. and Sidorowich, J.J., Predicting chaotic time series, Phys. Rev. Lett., 1987, vol. 59, pp. 845–848.

    Article  MathSciNet  Google Scholar 

  38. Casdagli, M., Nonlinear prediction of chaotic time-series, Phys. D, 1989, vol. 35, pp. 335–356.

    Article  MathSciNet  MATH  Google Scholar 

  39. Grassberger, P. and Procaccia, J., Nonlinear prediction of chaotic time series, Phys. Rev. Lett., 1983, vol. 50, pp. 346–349.

    Article  MathSciNet  MATH  Google Scholar 

  40. Wolf, A., Swift, J.B., Swinney, H.L., and Vastano, J.A., Determining Lyapunov exponents from a time series, Phys. A, 1985, vol. 16D, pp. 285–317.

    MathSciNet  MATH  Google Scholar 

  41. Anishchenko, B.C., Pavlov, A.H., and Yanson, N.B., Reconstruction of dynamic systems in the application to the solution of the problem of information protection, Zh. Tekh. Fiz., 1998, vol. 68, no. 12, pp. 1–8.

    Google Scholar 

  42. Stability of Linearized Systems. https://baumanka.pashinin.com/IU2/sem6/УТС/Теория/УСТОЙЧИВОСТЬ% 20ЛИНЕАРИЗОВАННЫХ%20СИСТЕМ.pdf. Accessed May 14, 2018.

  43. Biryukov, D.N., Lomako, A.G., and Rostovtsev, Yu.G., The appearance of anticipatory systems for prevention of the risks of cyber threats implementation, Tr. S-Peterb. Inst. Inf. Ross. Akad. Nauk, 2015, vol. 2, no. 39, pp. 5–25.

    Google Scholar 

  44. Gaaze-Rapoport, M.G., Ot ameby do robota: Modeli povedeniya (From Amoeba to Robots: Behavior Models), Moscow: Nauka, 1987.

  45. Pospelov, D.A., Myshlenie i avtomaty (Thinking and Automata), Moscow: Sov. radio, 1972.

  46. Pozdnyakov, A.V., Features of thermodynamics of self-organizing systems, Usp. Sovrem. Estestvozn., 2007, no. 8, pp. 60–62.

Download references

ACKNOWLEDGMENTS

This work was supported by a scholarship of the President of the Russian Federation for leading scientific schools of the Russian Federation, project no. NSH-2992.2018.9.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. P. Zegzhda or E. Yu. Pavlenko.

Additional information

Translated by O. Pismenov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zegzhda, D.P., Pavlenko, E.Y. Digital Manufacturing Security Indicators. Aut. Control Comp. Sci. 52, 1150–1159 (2018). https://doi.org/10.3103/S0146411618080333

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411618080333

Keywords:

Navigation