Skip to main content
Log in

Porous titanium and nitinol implants synthesized by SHS/SLS: Microstructural and histomorphological analyses of tissue reactions

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

The comparative microstructural analyses and histomorphological studies of tissue reactions to porous titanium and nitinol implants synthesized by Selective Laser Sintering (SLS) are presented for a rat model for bone implants. It was discovered that the surface of porous pegs of titanium and nitinol made by SHS/SLS has a significantly favorable structure to the mechanical interlocking with bone and soft tissues. Histological analysis of decalcified paraffin sections after implant removal could only show that trabecular bone structures and marrow cavities were observed around the porous implants. In the connective tissue of the remaining implant beds the following cells: macrophages, fibroblasts, adipocytes and lymphocytes are discernible. It was shown that the nitinol synthesized by combined SHS/SLS technique has a developed and ordered microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simske, S.J. and Sachdeva, R.L.C., Cranial Bone Apposition and Ingrowth in a Porous Nickel-Titanium Implant, J. Biomed. Mater. Res., 1995, vol. 29, no. 4, pp. 527–533.

    Article  CAS  PubMed  Google Scholar 

  2. Ayers, R.A., Simske, S.J., Bateman, T.A., Petkus, A., Sachdeva, R.L.C., and Gyunter, V.E., Effect of Nitinol Implant Porosity on Cranial Bone Ingrowth and Apposition after 6 Weeks, J. Biomed. Mater. Res. A, 1999, vol. 45, no. 1, pp. 42–47.

    Article  CAS  Google Scholar 

  3. Kapanen, A., Ilvesaro, J., Danilov, A., Ryhanen, J., Lehenkari, P., and Tuukkanen, J., Behavior of Nitinol in Osteoblast-Like ROS-17 Cell Cultures, Biomaterials, 2002, vol. 23, no. 3, pp. 645–650.

    Article  CAS  PubMed  Google Scholar 

  4. Medawar, El.L., Rocher, P., Hornez, J.C., Traisnel, M., Breme, J., and Hildebrand, H.F., Electrochemical and Cytocompatibility Assessment of Nitinol Memory Shape Alloy for Orthodontic Use, Biomol. Eng., 2002, vol. 19, no. 2, pp. 153–160.

    Article  PubMed  Google Scholar 

  5. Stankiewicz, J.M., Robertson, S.W., and Ritchie, R.O., Fatigue-Crack Growth Properties of Thin-Walled Superelastic Austenitic Nitinol Tube for Endovascular Stents, J. Biomed. Mater. Res. A, 2007, vol. 81, no. 3, pp. 685–691.

    CAS  PubMed  Google Scholar 

  6. Gaggl, V., Schultes, G., Muller, W.D., and Karcher, H., Scanning Electron Microscopical Analysis of Laser-Treated Titanium Implant Surfaces: A Comparative Study, Biomaterials, 2000, vol. 21, no. 10, pp. 1067–1073.

    Article  CAS  PubMed  Google Scholar 

  7. Hansson, S., A Conical Implant-Abutment Interface at the Level of the Marginal Bone Improves the Distribution of Stresses in The Supporting Bone: An Axisymmetric Finite Element Analysis, Clin. Oral Impl. Res., 2003, vol. 14, no. 3, pp. 286–293.

    Article  Google Scholar 

  8. Nakamura, H., Saruwatari, L., Aita, H., Takeuchi, K., and Ogawa, T., Molecular and Biomechanical Characterization of Mineralized Tissue by Dental Pulp Cells on Titanium, J. Dent. Res., 2005, vol. 84, no. 6, pp. 515–520.

    Article  CAS  PubMed  Google Scholar 

  9. Citeau, A., Guicheux, J., Vinatier, C., Layrolle, P., Nguyen, T.P., Pilet, P., and Daculsi, G., In Vitro Biological Effects of Titanium Rough Surface Obtained by Calcium Phosphate Grid Blasting, Biomaterials, 2005, vol. 26, no. 2, pp. 157–165.

    Article  CAS  PubMed  Google Scholar 

  10. Shishkovsky, I.V., Makarenko, A.G., and Petrov, A.L., Conditions for SHS of Intermetallic Compounds with Selective Laser Sintering of Powdered Compositions, Fiz. Goreniya Vzryva, 1999, vol. 35, no. 2, pp. 59–64 [Engl. transl. Combust. Explos. Shock Waves, 1999, vol. 35, no. 2, pp. 166–170].

    Google Scholar 

  11. Ayers, R.A., Burkes, D.E., Gottoli, G., Yi, H.-C., Zhim, F., Yahia, L.H., and Moore, J.J., Combustion Synthesis of Porous Biomaterials, J. Biomed. Mater. Res. A, 2007, vol. 81, no. 3, pp. 634–643.

    PubMed  Google Scholar 

  12. Shishkovsky, I.V., Makarenko, A.G., and Petrov, A.L., Direct SLS of Powder Compositions Used for SHS, Proc. VIII Int. Symp. on Solid Free-Form Fabrication, Austin, USA, August 11–13, 1997, pp. 91–98.

  13. Kuznetsov, M.V., Parkin, I.P., Kvick, A., Busurin, S.M., Shishkovsky, I.V., and Morozov, Yu.G., Advanced Ways and Experimental Methods in Self-Propagating High-Temperature Synthesis (SHS) of Inorganic Materials, Mater. Sci. Forum, 2006, vol. 518, pp. 181–188.

    Article  CAS  Google Scholar 

  14. Gureev, D.M., Emelina, O.G., Zhuravel’, L.V., Petrov, A.L., Pokoev, A.V., and Shishkovsky, I.V., Structure and Properties of Ni-Ti Intermetallic Phases Synthesized upon Selective Laser Sintering: I. X-ray Diffraction Analysis, Fiz. Met. Metalloved., 2002, vol. 93, no. 2, pp. 80–84 [Engl. transl. Phys. Met. Metallogr., 2002, vol. 93, no. 2, pp. 180–184].

    Google Scholar 

  15. Shihkovsky, I.V., Scherbakov, V.I., Morozov, Y.G., Kuznetsov, M.V., and Parkin, I.P., Surface Laser Sintering of Exothermic Powder Compositions: A Thermal and SEM/EDX Study, J. Therm. Anal. & Cal., 2008, vol. 91, no. 2, pp. 427–436.

    Article  Google Scholar 

  16. Grimm, T., User’s Guide to Rapid Prototyping, Drive Dearborn: Society of Manufacturing Engineers, 2004.

    Google Scholar 

  17. Kuznetsov, M.V., Parkin, I.P., Caruana, D.J., and Morozov, Yu.G., Combustion Synthesis of Sodium-Substituted Lanthanum Manganites, Mendeleev Commun., 2006, vol. 16, no. 1, pp. 36–38.

    Article  Google Scholar 

  18. Kuznetsov, M.V., Parkin, I.P., Caruana, D.J., and Morozov, Y.G., Combustion Synthesis of Alkaline-Earth Substituted Lanthanum Manganites; LaMnO3, La0.6Ca0.4MnO3 and La0.6Sr0.4MnO3, J. Mater. Chem., 2004, vol. 14 no. 9, pp. 1377–1382.

    Article  CAS  Google Scholar 

  19. Spiers, H., Parkin, I.P., Pankhurst, Q.A., Affleck, L., Green, M., Caruana, D.J., Kuznetsov, M.V., Yao, J., Vaughan, G., Terry, A., and Kvick, A., Self-Propagating High-Temperature Synthesis of Magnesium Zinc Ferrites (MgxZn1 − x Fe2O4): Thermal Imaging and Time Resolved X-ray Diffraction Experiments, J. Mater. Chem., 2004, vol. 14, no. 7, pp. 1104–1111.

    Article  CAS  Google Scholar 

  20. Kuznetsov, M.V., Busurin, S.M., Morozov, Y.G., and Parkin, I.P., Heterogeneous Combustion in Electrical and Magnetic Fields: Modification of Combustion Parameters and Products, Phys. Chem. Chem. Phys., 2003, vol. 5, no. 11, pp. 2291–2296.

    Article  CAS  Google Scholar 

  21. Kuznetsov, M.V., Pankhurst, Q.A., Parkin, I.P., and Morozov, Y.G., Self-Popagating High-Temperature Synthesis of Chromium Substituted Lanthanum Orthoferrites LaFe1 − x CrxO3 (0 ≤ x ≤ 1), J. Mater. Chem., 2001, vol. 11, no. 3, pp. 854–858.

    Article  CAS  Google Scholar 

  22. Parkin, I.P., Pankhurst, Q.A., Affleck, L., Aguas, M.D., and Kuznetsov, M.V., Self-Propagating High-Temperature Synthesis of BaFe12O19 Mg0.5Zn0.5Fe2O4 and Li0.5Fe2.5O4: Time Resolved X-ray Diffraction Studies (TRXRD), J. Mater. Chem., 2001, vol. 11, no. 1, pp. 193–199.

    Article  CAS  Google Scholar 

  23. Hopkinson, N., Hague, R.J.M., and Dickens, P.M., Rapid Manufacturing: An Industrial Revolution for the Digital Age, New York: Wiley, 2006.

    Google Scholar 

  24. Kuznetsov, M.V., Morozov, Y.G., Busurin, S.M., and Parkin, I.P., Phase Composition and Magnetism of Combustion Products in Ba-Fe Compounds Synthesized under Applied DC Electric Field, J. Magn. Magn. Mater., 2007, vol. 309, no. 2, pp. 202–206.

    Article  CAS  ADS  Google Scholar 

  25. Wright, P.K., 21 st Century Manufacturing, Upper Saddle River: Prentice-Hall, 2001.

    Google Scholar 

  26. Arutyunov, Yu.I., Zhuravel’, L.V., Pokoev, A.V., and Shishkovskii, I.V., Structure and Properties of the Ni-Ti Intermetallic Phases Synthesized upon Selective Laser Sintering: II. Structure and Corrosion Behavior, Fiz. Met. Metalloved., 2002, no. 2, pp. 85–88 [Engl. transl. Phys. Met. Metallogr., 2002, vol. 93, no. 2, pp. 185–188].

  27. Shishkovsky, I.V., Tarasova, E.Yu., Zhuravel’, L.V., and Petrov, A.L., The Synthesis of a Biocomposite Based on Nickel Titanium and Hydroxyapatite under Selective Laser Sintering Conditions, Pis’ma Zh. Tekh. Fiz., 2001, vol. 27, no. 5, pp. 81–86 [Engl. transl. Tech. Phys. Lett., 2001, vol. 27, no. 3, pp. 211–213].

    Google Scholar 

  28. Kuznetsov, M.V., Morozov, Yu.G., Parkin, I.P., and Shishkovsky, I.V., Laser-Induced Combustion Synthesis of 3D Functional Materials: Computer-Aided Design, J. Mater. Chem., 2004, vol. 14, no. 23, pp. 3444–3448.

    Article  Google Scholar 

  29. Shishkovsky, I.V., Volova, L.T., Kuznetsov, M.V., Morozov, Yu.G., and Parkin, I.P., Porous Biocompatible Implants and Tissue Scaffolds Synthesized by Selective Laser Sintering from Ti and NiTi, J. Mater. Chem., 2008, vol. 18, no. 12, pp. 1309–1317.

    Article  CAS  Google Scholar 

  30. Shishkovsky, I.V., Smurov, I., and Morozov, Yu.G., Nanofractal Surface Structure under Laser Sintering of Titanium and Nitinol for Bone Tissue Engineering, Appl. Surf. Sci., 2007, vol. 254, no. 4, pp. 1145–1149.

    Article  CAS  ADS  Google Scholar 

  31. Morrison, A.R., Developing an Ethical View on the Use of Animals in Biomedical Research: Fourth Walter C. Randall Lecture on Biomedical Ethics, Physiologist, 2002, vol. 45, no. 3, pp. 139–144.

    Google Scholar 

  32. Shishkovsky, I.V., Shape Memory Effect in Porous NiTi Articles Fabricated by Selective Laser Sintering, Pis’ma Zh. Tekh. Fiz., 2005, vol. 31, no. 5, pp. 15–21 [Engl. transl. Tech. Phys. Lett., 2005, vol. 31, no. 3, pp. 186–188].

    Google Scholar 

  33. Shishkovsky, I.V., Stress-Strain Analysis of Porous Scaffolds Made from Titanium Alloys Synthesized via SLS Method, Appl. Surf. Sci., 2009, vol. 255, no. 24, pp. 9902–9905.

    Article  CAS  ADS  Google Scholar 

  34. Aleksandrova, M. and Shishkovsky, I., FE Biomechanical Optimization of Implant Porous Structure from Titanium Alloys Fabricated via SLS Method. Proc. V Int. Conf. on Laser Assisted Net Shape Engineering (LANE’2007), September 26–28, 2007, Erlangen, Germany, pp. 367–378.

  35. Shishkovsky, I., Morozov, Yu., and Smurov, I., Nanostructural Self-Organization under Selective Laser Sintering of Exothermal Powder Mixtures, Appl. Surf. Sci., 2009, vol. 255, no. 10, pp. 5565–5568.

    Article  CAS  ADS  Google Scholar 

  36. Shishkovsky, I., Petrov, A., Shcherbakov, V., Kuznetsov, M., Morozov, Yu., Volova, L., Barikov, I., and Fokeev, S., Porous Surface Structure of Biocompatible Implants Base of Titanium and Nitinol Synthesized by SLS/M Method, Proc. SPIE, 2007, vol. 6734, pp. 1–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kuznetsov.

Additional information

The text was submitted by the authors in English.

About this article

Cite this article

Shishkovsky, I.V., Kuznetsov, M.V. & Morozov, Y.G. Porous titanium and nitinol implants synthesized by SHS/SLS: Microstructural and histomorphological analyses of tissue reactions. Int. J Self-Propag. High-Temp. Synth. 19, 157–167 (2010). https://doi.org/10.3103/S1061386210020123

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386210020123

Keywords

Navigation