Skip to main content
Log in

Estimating the surface tension of grain boundaries in pure metals

  • Proceedings of the Interdisciplinary Symposium “Ordering in Minerals and Alloys” OMA-18 and Proceedings of the International Interdisciplinary Symposium “Order, Disorder, and Properties of Oxides” ODPO-18
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The surface tension of grain boundaries with liquid-like structure in a pure metal is presented as a function of the melting temperature and the molar volume of the metal in the solid state at the temperature of melting. Several empirical expressions for estimating the average surface tension of high-angle GBs at high homologous temperatures are proposed on this basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McLean, D., Grain Boundaries in Metals, Oxford: Clarendon Press, 1957.

    Google Scholar 

  2. Cahn, J.W., Acta Metall., 1956, vol. 4, p. 449.

    Article  Google Scholar 

  3. Bokshtein, B.S., Kopetskii, Ch.V., and Shvindlerman, L.S., Termodinamika i kinetika granits zeren v metallakh (Thermodynamics and Kinetics of Grain Boundaries in Metals), Moscow: Metallurgiya, 1986.

    Google Scholar 

  4. Gupta, D., Interface Sci., 2003, vol. 11, p. 7.

    Article  Google Scholar 

  5. Speight, M.V., Acta Metall., 1968, vol. 16, p. 133.

    Article  Google Scholar 

  6. Murr, L.E., Interfacial Phenomena in Metals and Alloys, Massachusetts: Addison-Wesley, 1975.

    Google Scholar 

  7. Kê, T.-S., Phys. Rev., 1947, vol. 71, p. 533.

    Article  ADS  Google Scholar 

  8. Gust, W., J. Phys., 1985, vol. 46, no. C4, p. 537.

    Google Scholar 

  9. Erb, U. and Gleiter, H., Scr. Metall., 1979, vol. 13, p. 61.

    Article  Google Scholar 

  10. Keblinski, P., Wolf, D., Phillpot, S.R., and Gleiter, H., Philos. Mag. A, 1999, vol. 79, p. 2735.

    Article  ADS  Google Scholar 

  11. Suzuki, A. and Mishin, Y., J. Mater. Sci., 2005, vol. 40, p. 3155.

    Article  ADS  Google Scholar 

  12. Mott, N.F., Proc. Phys. Soc., 1948, vol. 60, p. 391.

    Article  ADS  Google Scholar 

  13. Bolling, G.F., Acta Metall., 1968, vol. 16, p. 1147.

    Article  Google Scholar 

  14. Turnbull, D., J. Appl. Phys., 1950, vol. 21, p. 1022.

    Article  ADS  Google Scholar 

  15. Miedema, A.R. and Broeder, F.J.A., Z. Metallkd., 1979, vol. 70, p. 14.

    Google Scholar 

  16. Digilov, R.M., Phys. B, 2004, vol. 352, p. 53.

    Article  ADS  Google Scholar 

  17. Vinet, B., Magnusson, L., Fredriksson, H., and Desré, P.-J., J. Colloid Interface Sci., 2002, vol. 255, p. 363.

    Article  Google Scholar 

  18. Wolf, D., Scr. Metall., 1989, vol. 23, p. 1913.

    Article  Google Scholar 

  19. Roth, T.A. and Suppayak, P., Mater. Sci. Eng., 1978, vol. 35, p. 187.

    Article  Google Scholar 

  20. Hasson, G.C. and Goux, C., Scr. Metall., 1971, vol. 5, p. 889.

    Article  Google Scholar 

  21. Hasson, G., Le Coze, J., and Lesbats, P., C. R. Acad. Sci., Paris, 1971, vol. C273, p. 1314.

    Google Scholar 

  22. Provan, J.W. and Bamiro, O.A., Acta Metall., 1977, vol. 25, p. 309.

    Article  Google Scholar 

  23. Ewing, R.H. and Chalmers, B., Surf. Sci., 1972, vol. 31, p. 161.

    Article  ADS  Google Scholar 

  24. Ewing, R.H., Acta Metall., 1971, vol. 19, p. 1359.

    Article  Google Scholar 

  25. Digilov, R.M., J. Cryst. Growth, 2003, vol. 249, p. 363.

    Article  ADS  Google Scholar 

  26. Allen, B.C., Liquid Metals Chemistry and Physics, Beer S.Z., Ed., New York: Marcel Dekker, 1972, p. 161.

  27. Digilov, R.M., Int. J. Thermophys., 2002, vol. 23, p. 1381.

    Article  Google Scholar 

  28. Kumikov, V.K. and Khokono., Kh.B., J. Appl. Phys., 1983, vol. 54, p. 1346.

    Article  ADS  Google Scholar 

  29. Mills, K.C. and Su, Y.C., Int. Mater. Rev., 2006, vol. 51, p. 329.

    Article  ADS  Google Scholar 

  30. Tyson, W.R. and Miller, W.A., Surf. Sci., 1977, vol. 62, p. 267.

    Article  ADS  Google Scholar 

  31. Handbook of Condensed Matter and Materials Data, Martienssen, W. and Warlimont, H., Eds., Berlin: Springer, 2005.

  32. Khairulin, R.A., Density, heat expansion, and phase transitions of liquid metals, alloys, and rare-earth compounds, Doctoral (Phys.–Math.) Dissertation, Novosibirsk: Kutateladze Institute of Thermophysics, 2003.

    Google Scholar 

  33. Stankus, S.V., Elements density change under melting. Methods and experimental data, Preprint of Kutateladze Institute of Thermophysics, Novosibirsk, 1991, no. 247-91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Prokofjev.

Additional information

Original Russian Text © S.I. Prokofjev, 2016, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2016, Vol. 80, No. 6, pp. 796–799.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prokofjev, S.I. Estimating the surface tension of grain boundaries in pure metals. Bull. Russ. Acad. Sci. Phys. 80, 725–728 (2016). https://doi.org/10.3103/S1062873816060253

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873816060253

Navigation