Skip to main content
Log in

Why detonation nanodiamonds are small

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

Based on X-ray diffraction patterns and an original atom distribution calculation by the proposed computer models, we infer that there exist high-quality and poor-quality detonation nanodiamonds. It has been demonstrated that the high-quality detonation nanodiamonds are small in size and have a structure corresponding to that of macrodiamond, while poor-quality ones consist of a core and a shell whose atom distribution has been disturbed and differs from that in macrodiamond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bursill, L.A., Fullerton, A.L., and Bourgeois, L.N., Size and Surface Structure of Diamond Nano-crystals, Int. J. Modern Physics B, 2001, vol. 15, no. 31, pp. 4087–4102.

    Article  CAS  Google Scholar 

  2. Chen, P.W., Ding, Y.S., Chen, Q., et al., Spherical Nanometer-sized Diamond Obtained from Detonation, Diamond Relat. Mater., 2000, vol. 9, pp. 1722–1725.

    Article  CAS  Google Scholar 

  3. Donnet, J.-B., Foussona, E., Wang, T.K., et al., Dynamic Synthesis of Diamonds, Diamond Relat. Mater., 2000, vol. 9, no. 3, pp. 887–892.

    Article  CAS  Google Scholar 

  4. Yur’ev, G.S. and Dolmatov, V.Yu., X-Ray Diffraction Study of Detonation Nanodiamonds, Sverkhtverdye Materialy, 2010, no. 5, pp. 29–50 [J. Superhard Mater., 2010, no. 5, pp. 311–328].

    Google Scholar 

  5. Adadurov, G.F., Breusov, O.N., Drobyshev, V.N., Diamonds Produced by Explosion, Fiz. Impul. Davlen., Tr., 1979, issue 44(74), no. 4, pp. 157–160.

    Google Scholar 

  6. Vyskubenko, B.A., Danilenko, V.V., Liin, E.E., et al., The Influence of Scale Factors on the Diamond Particle Size and Yield in Detonation Synthesis, Fiz. Goren. Vzryva, 1992, vol. 3, no. 2, p. 108–109.

    Google Scholar 

  7. Dolgushin, D.S., Anisichkin, V.F., and Petrov, E.A., Shock-Wave Synthesis of Fullerenes from Graphite, Fiz. Goren. Vzryva, 1999, vol. 33, no. 4, pp. 98–99.

    Google Scholar 

  8. Lisitsa, Yu.V., Optical Spectra and Structure of Ultradispersed Diamonds, in Materialy konf. “Ul’tradispersnye poroshki, materialy i nanostruktury” (Proc. Conf. Ultradispersed Powders, Materials, and Nanostructures), Krasnoyarsk, December 17–19, 1996, Krasnoyarsk: KGTU, 1996, pp. 92–93.

    Google Scholar 

  9. Aleksenskiy, A.E., Baidakova, M. V., Vul’, A.Ya., and Siklitskiy, V.I., Structure of Diamond Nanocluster, Fiz. Tverd. Tela, 1999, vol. 41,issue 4, pp. 740–743.

    Google Scholar 

  10. Shames, A.I., Panich, A.M., Kempinski, W., et al., Defects and Impurities in Nanodiamonds: EPR, NMR and TEM Study, J. Phys. Chem., 2002, vol. 63, pp. 1994–2001.

    Google Scholar 

  11. Dolmatov, V.Yu., Ul’tradispersnye almazy detonatsionnogo sinteza (Detonation-Synthesized Ultradispersed Diamonds), St.Petersburg: Izd. SPbGPU, 2003.

    Google Scholar 

  12. Mykhaylyk, O.O., Solonin, Yu.M., Batchelder, D., and Brydson, R., Transformation of Nanodiamond into Carbon Onions: a Comparative Study by High-Resolution Transmission Electron Microscopy, Electron Energy-loss Spectroscopy, X-ray Diffraction, Small-angle X-ray Scattering and Ultra-violet Raman Spectroscopy, J. Appl. Phys., 2005, vol. 97, no. 7, art. 074302.

    Google Scholar 

  13. James, R.W., The Optical Principles of the Diffraction of X-rays, London: G. Bell and Sons Limited, 1947.

    Google Scholar 

  14. Oleinik, G.S. and Bochechka A.A., On the Mechanism of Forming Nanosized Particles of Diamond Detonation Synthesized from Explosive Decomposition Products, Sverkhtverdye Materialy, 2008, no. 3, pp. 3–30 [J. Superhard Mater., 2008, no. 3, pp. 143–162].

    Google Scholar 

  15. Dolmatov, V.Yu., On the Mechanism of Detonation Nanodiamond Synthesis, Sverkhtverdye Materialy, 2008, no. 4, pp. 25–34 [J. Superhard Mater., 2008, no. 4].

    Google Scholar 

  16. Dolmatov, V.Yu., Myllymäki, V., and Vehanen, A., A Possible Mechanism of Nanodiamond Formation in Detonation Synthesis, Sverkhtverdye Materialy [J, Superhard Mater.] (in print).

  17. Jones, A.P., D’Henderqout, L., Interstellar Nanodiamonds: the Carriers of Mid-infrared Emission Bands?, Astronomy and Astrophysics, 2000, vol. 335, pp. 1191–1200.

    Google Scholar 

  18. Raty, J.-V. and Galli, G., Ultradispersity of Diamond at the Nanoscale, Nature Materials, 2003, vol. 2, pp. 792–795.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.Yu. Dolmatov, G.S. Yur’ev, V. Myllymäki, K.M. Korolev, 2013, published in Sverkhtverdye Materialy, 2013, Vol. 35, No. 2, pp. 21–28.

About this article

Cite this article

Dolmatov, V.Y., Yur’ev, G.S., Myllymäki, V. et al. Why detonation nanodiamonds are small. J. Superhard Mater. 35, 77–82 (2013). https://doi.org/10.3103/S1063457613020020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457613020020

Keywords

Navigation