Skip to main content
Log in

Estimating the Index of Increase via Balancing Deterministic and Random Data

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

We introduce and explore an empirical index of increase that works in both deterministic and random environments, thus allowing to assess monotonicity of functions that are prone to random measurement errors. We prove consistency of the index and show how its rate of convergence is influenced by deterministic and random parts of the data. In particular, the obtained results suggest a frequency at which observations should be taken in order to reach any pre-specified level of estimation precision.We illustrate the index using data arising from purely deterministic and error-contaminated functions, which may or may not be monotonic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. J. Anscombe, “Graphs in Statistical Analysis”, Amer.Statist. 27, 17–21 (1973).

    Google Scholar 

  2. S. Arlot and A. Celisse, “A Survey of Cross-Validation Procedures forModel Selection”, Statist. Surveys 4, 40–79 (2010).

    Article  MATH  Google Scholar 

  3. M. Bebbington C. D. Lai and R. Zitikis, “Modeling Human Mortality Using Mixtures of Bathtub Shaped Failure Distributions”, J. Theoret. Biology 245, 528–538 (2011).

    Article  MathSciNet  Google Scholar 

  4. M. Bebbington C. D. Lai and R. Zitikis, “ModellingDeceleration in Senescent Mortality”, Math. Population Studies 18, 18–37 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  5. P. J. Bickel F. Götze, and W. R. van Zwet, “Resampling Fewer Than n Observations: Gains, Losses, and Remedies for Losses”, Statistica Sinica 7, 1–31 (1997).

    MathSciNet  MATH  Google Scholar 

  6. P. J. Bickel and A. Sakov, “On the Choice of m in the m out of n Bootstrap and Confidence Bounds for Extrema”, Statistica Sinica 18, 967–985 (2008).

    MathSciNet  MATH  Google Scholar 

  7. H. Bühlmann, “An Economic Premium Principle”, ASTIN Bulletin 11, 52–60 (1980).

    Article  MathSciNet  Google Scholar 

  8. H. Bühlmann, “The General Economic Premium Principle”, ASTIN Bulletin 14, 13–21 (1984).

    Article  Google Scholar 

  9. A. Celisse, Model Selection via Cross-Validation in Density Estimation, Regression, and Change-Points Detection, UniversitéParis Sud–Paris XI, Paris. HAL Id: tel-00346320. https://doi.org/tel.archives-ouvertes.fr/tel-00346320 (2008).

    Google Scholar 

  10. L. Chen and R. Zitikis, “Measuring and Comparing Student Performance: A New Technique for Assessing Directional Associations”, Education Sciences 7, 1–27 (2017).

    Article  Google Scholar 

  11. A. DasGupta, Asymptotic Theory of Statistics and Probability (Springer, New York, 2008).

    MATH  Google Scholar 

  12. A. C. Davison and D. V. Hinkley, Bootstrap Methods and their Application (Cambridge Univ. Press, Cambridge, UK. 1997).

    Book  MATH  Google Scholar 

  13. Y. Davydov and R. Zitikis, “The Influence of Deterministic Noise on Empirical Measures Generated by Stationary Processes”, Proc. Amer.Math. Soc. 132, 1203–1210 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  14. Y. Davydov and R. Zitikis, “An Index of Monotonicity and its Estimation: A Step beyond Econometric Applications of the Gini Index”, Metron 63 (special issue in memory of Corrado Gini), 351–372 (2005).

    MathSciNet  Google Scholar 

  15. Y. Davydov and R. Zitikis, “Deterministic Noises that can be Statistically Distinguished from the Random Ones”, Statist. Inference for Stochastic Processes 10, 165–179 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  16. Y. Davydov and R. Zitikis, “Quantifying Non-Monotonicity of Functions and the Lack of Positivity in Signed Measures”, Modern Stochastics: Theory and Applications 4, 219–231 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  17. N. Dunford and J. T. Schwartz, Linear Operators, Part 1: General Theory (Wiley, New York, 1988).

    MATH  Google Scholar 

  18. B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap (Chapman and Hall/CRC, Boca Raton, FL, 1993).

    Book  MATH  Google Scholar 

  19. M. Egozcue L. Fuentes García, W. K. Wong, and R. Zitikis, “The Covariance Sign of Transformed Random Variables with Applications to Economics and Finance”, IMA J. Management Math. 22, 291–300 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  20. T. Eichner and A. Wagener, “Multiple Risks and Mean-Variance Preferences”, Operations Research 57, 1142–1154 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Feder R. E. Just and A. Schmitz, “FuturesMarkets and the Theory of the Firmunder PriceUncertainty”, Quarterly J. Economics 94, 317–328 (1980).

    Article  Google Scholar 

  22. M. Friedman and L. J. Savage, “The Utility Analysis of Choices Involving Risk”, J. Political Economy 56, 279–304 (1948).

    Article  Google Scholar 

  23. E. Furman and R. Zitikis, “Weighted Premium Calculation Principles”, Insurance: Math. and Economics 42, 459–465 (2008).

    MathSciNet  MATH  Google Scholar 

  24. N. V. Gribkova and R. Helmers, “On the Edgeworth Expansion and the M out of N Bootstrap Accuracy for a Studentized TrimmedMean”, Math.Methods Statist. 16, 142–176 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  25. N. V. Gribkova and R. Helmers, “On the Consistency of the MN Bootstrap Approximation for a Trimmed Mean”, Theory Probab. and Its Appl. 55, 42–53 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Hall, The Bootstrap and Edgeworth Expansion (Springer, New York, 1992).

    Book  MATH  Google Scholar 

  27. W. Härdle, Smoothing Techniques, with Implementation in S (Springer, New York, 1991).

    Book  MATH  Google Scholar 

  28. J. D. Hey, “Hedging and the Competitive Labor-Managed Firm under Price Uncertainty”, Amer. Economic Review 71, 753–757 (1981).

    Google Scholar 

  29. U. Kamps, “On a Class of Premium Principles Including the Esscher Principle”, Scand. Actuarial J. 1998, 75–80 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Kahneman and A. Tversky, “Prospect Theory of Decisions under Risk”, Econometrica 47, 263–291 (1979).

    Article  MATH  Google Scholar 

  31. A. N. Kolmogorov and S. V. Fomin, Introductory Real Analysis (Dover, New York, 1970).

    MATH  Google Scholar 

  32. E. L. Lehmann, “Some Concepts of Dependence”, Ann. Math. Statist. 37, 1137–1153 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Markowitz, “The Utility ofWealth”, J. Political Economy 60, 151–156 (1952).

    Article  Google Scholar 

  34. J. Meyer and L. J. Robison, “Hedging under Output Price Randomness”, Amer. J. Agricultural Economics 70, 268–272 (1988).

    Article  Google Scholar 

  35. I. P. Natanson, Theory of Functions of a Real Variable (Dover, New York, 2016).

    Google Scholar 

  36. D. T. Qoyyimi, A Novel Method for Assessing Co-monotonicity: An Interplay between Mathematics and Statistics with Applications, Electronic Thesis and Dissertation Repository Nr. 3322. https://doi.org/ir.lib.uwo.ca/etd/3322 (2015).

    Google Scholar 

  37. D. T. Qoyyimi and R. Zitikis, “Measuring the Lack ofMonotonicity in Functions”, Math. Scientist 39, 107–117 (2014).

    MathSciNet  MATH  Google Scholar 

  38. D. T. Qoyyimi and R. Zitikis, “Measuring Association via Lack of Co-Monotonicity: the LOC Index and a Problem of Educational Assessment”, DependenceModeling 3, 83–97 (2015).

    MathSciNet  MATH  Google Scholar 

  39. R Core Team, R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing, Vienna, https://doi.org/www.R-project.org/ (2013).

    Google Scholar 

  40. C. Sievert C. Parmer T. Hocking S. Chamberlain K. Ram M. Corvellec and P. Despouy, plotly: Create Interactive Web Graphics via’ plotly.js’. https://doi.org/CRAN.R-project.org/package=plotly (2017).

    Google Scholar 

  41. B. W. Silverman, Density Estimation for Statistics and Data Analysis (Chapman and Hall/CRC, London, 1986).

    Book  MATH  Google Scholar 

  42. D.W. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization, 2nd. ed. (Wiley, New York, 2015).

    Book  MATH  Google Scholar 

  43. J. Shao and D. Tu, The Jackknife and Bootstrap (Springer, New York, 1995).

    Book  MATH  Google Scholar 

  44. H.-W. Sinn, “Expected Utility, μ-σ Preferences, and Linear Distribution Classes: A Further Result”, J. Risk and Uncertainty 3, 277–281 (1990).

    Article  Google Scholar 

  45. R. M. Thorndike and T. Thorndike-Christ, Measurement and Evaluation in Psychology and Education, 8th ed. (Prentice Hall, Boston, MA, 2010).

    Google Scholar 

  46. A. Tversky and D. Kahneman, “Advances in Prospect Theory: Cumulative Representation of Uncertainty”, J. Risk and Uncertainty 5, 297–323 (1992).

    Article  MATH  Google Scholar 

  47. S. Wang, “Insurance Pricing and Increased Limits Ratemaking by Proportional Hazards Transforms”, Insurance:Math. and Economics 17, 43–54 (1995).

    MathSciNet  MATH  Google Scholar 

  48. S. Wang, “An Actuarial Index of the Right-Tail Risk”, NorthAmer. Actuarial J. 2, 88–101 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  49. L. Wasserman, All of Statistics: a Concise Course in Statistical Inference, 2nd ed. (Springer, New York, 2005).

    MATH  Google Scholar 

  50. H. Wickham, ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2006).

    MATH  Google Scholar 

  51. W. K. Wong, “Stochastic Dominance Theory for Location-Scale Family”, J. Appl. Math. and Decision Sci. 2006, 1–10 (2006).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Chen.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Davydov, Y., Gribkova, N. et al. Estimating the Index of Increase via Balancing Deterministic and Random Data. Math. Meth. Stat. 27, 83–102 (2018). https://doi.org/10.3103/S1066530718020011

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066530718020011

Keywords

2010 Mathematics Subject Classification

Navigation