Skip to main content
Log in

Effects of hydrogen level and cooling rate on ultimate tensile strength of Al A319 alloy

  • Physical Metallurgy and Heat Treatment
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The present study investigated the effects of initial Hydrogen level and cooling rate on ultimate tensile strength of commercial Al-A319 alloys. Three hydrogen levels (0.01, 0.2, and 0.41 mL/100 grams of melt) and five cooling rate were studied. Total of 45 tensile test bars was prepared (three hydrogen levels × five cooling rate × three repeats). The UTS of the samples was determined though uniaxial tension tests. Furthermore, the microstructures of the samples were studied by standard metallographic technique and image analysis software. Finally the relationship between UTS and microstructurai features—SDAS and fraction of porosity (Fp%)—of the alloys was investigated.

Results of tensile test revealed: (i) UTS of the alloy decreased with increasing of hydrogen level or decreasing of cooling rate and (ii) Increasing of cooling rate beyond a certain value increased the UTS of the alloy significantly. Results of image analysis showed that the Fp% increased with increasing of hydrogen level and decreasing of cooling rate.

Finally a Matrix Index [= −SDAS (μm) − 68.7 Ln (Fp%) + 275] was defined to correlate the tensile strength and microstructurai features of the alloy. It was shown that the UTS of the alloys had a linear dependence on matrix index according the below equation:

$UTS(MPa) = 0.916M.I. + 265.17R^2 = 0.95$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sebaie, O.E., Samuel, A., Samuel, F., and Doty, H., Mater. Sci. Eng., 2008, vol. A 480, pp. 342–355.

    Article  Google Scholar 

  2. García-Garcia, G., Espinoza-Cuadra, J., and Mancha-Molinar, H., Mater. Des., 2007, vol. 28, pp. 428–433.

    Article  Google Scholar 

  3. Firouzdor, V., Rajabi, M., Nejati, E., and Khomamizadeh, F., Mater. Sci. Eng., 2007, vol. A 454, pp. 528–535.

    Article  Google Scholar 

  4. Rincon, E., Lopez, H., Cisneros, M., and Mancha, H., Mater. Sci. Eng., 2009, vol. A 519, pp. 128–140.

    Article  Google Scholar 

  5. Eisaabadi, G.B., Davami, P., Kim, S., and Varahram, N., Mater. Sci. Eng., 2012, vol. A 552, pp. 36–47.

    Article  Google Scholar 

  6. Eisaabadi, G.B., Varahram, N., Davami, P., and Kim, S.K., Mater. Sci. Eng., 2012, vol. A 548, pp. 99–105.

    Article  Google Scholar 

  7. Kashyap, K., Murali, S., Raman, K., and Murthy, K., Mater. Sci. Technol., 1993, vol. 9, pp. 189–204.

    Article  Google Scholar 

  8. Sigworth, G., Shivkumar, S., and Apelian, D., Trans. AFS, 1989, vol. 97, pp. 811–824.

    Google Scholar 

  9. Samuel, A. and Samuel, F., Metall. Mater. Trans., 1995, vol. A 26, pp. 2359–2372.

    Article  Google Scholar 

  10. Martinez, E.D., Cisneros, M.G., Valtierra, S., and Lacaze, J., Scr. Mater., 2005, vol. 52, pp. 439–443.

    Article  Google Scholar 

  11. Anson, J. and Gruzleski, J., Mater. Charact., 1999, vol. 43, pp. 319–335.

    Article  Google Scholar 

  12. Ma, Z., Samuel, A., Samuel, F., Doty, H., and Valtierra, S., Mater. Sci. Eng., 2008, vol. A 490, pp. 36–51.

    Article  Google Scholar 

  13. Tekmen, C., Ozdemir, I., Cocen, U., and Onel, K., Mater. Sci. Eng., 2003, vol. A 360, pp. 365–371.

    Article  Google Scholar 

  14. Irfan, M., Schwam, D., Karve, A., and Ryder, R., Mater. Sci. Eng., 2011, vol. A 535, pp. 108–114.

    Google Scholar 

  15. Dispinar, D., Akhtar, S., Nordmark, A., and Syvertsen, F., Adv. Mater. Res., 2012, vol. 445, pp. 283–288.

    Article  Google Scholar 

  16. Caceres, C., Djurdjevic, M., Stockwell, T., and Sokolowski, J., Scr. Mater., 1999, vol. 42.

  17. Li, Z., Samuel, A., Samuel, F., Ravindran, C., and Valtierra, S., Mater. Sci. Eng., 2004, vol. A 367, pp. 96–110.

    Article  Google Scholar 

  18. Heiberg, G., Raanes, M., Arnberg, L., Nogita, K., Dahle, A., and Dons, A., Trans. AFS, 2002, vol. 110, pp. 347–358.

    Google Scholar 

  19. Bahmani, A., Hatami, N., Varahram, N., Davami, P., and Shabani, M.O., Int. J. Adv. Manuf. Technol., 2012, vol. 64, pp. 1313–1321.

    Article  Google Scholar 

  20. Pennors, A., Samuel, A., Samuel, F., and Doty, H., Trans. AFS, 1998, vol. 106, pp. 251–264.

    Google Scholar 

  21. Samuel, A., Pennors, A., Villeneuve, C., Samuel, F., and Doty, H., Int. J. Cast Met. Res., 2000, vol. 13, p. 231.

    Google Scholar 

  22. Cao, X. and Campbell, J., Mater. Trans., JIM, 2006, vol. 47, pp. 1303–1312.

    Article  Google Scholar 

  23. Shabani, M.O., Mazahery, A., Bahmani, A., Davami, P., and Varahram, N., Kovove Mater., 2011, vol. 49, pp. 253–264.

    Google Scholar 

  24. Hafiz, M.F. and Kobayashi, T., Scr. Metall. Mater., 1994, vol. 30.

  25. Saigal, A. and Fuller, E.R., Computational Materials Science, 2001, vol. 21, pp. 149–158.

    Article  Google Scholar 

  26. Samuel, F., Samuel, A., and Doty, H., Trans. AFS, 1996, vol. 104, pp. 893–902.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. O. Shabani.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahmani, A., Eisaabadi, G.B., Davami, P. et al. Effects of hydrogen level and cooling rate on ultimate tensile strength of Al A319 alloy. Russ. J. Non-ferrous Metals 55, 365–370 (2014). https://doi.org/10.3103/S106782121404004X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106782121404004X

Keywords

Navigation