Skip to main content
Log in

Use of Calcium in Alloys: From Modifying to Alloying

  • Physical Metallurgy and Heat Treatment
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

Calcium is one of the most widespread and, consequently, low-cost metals on Earth. It has been applied for a long time in modifying and alloying alloys of heavy metals, in particular, lead and copper. It is used as a modifier in cast irons and steels. Calcium began being applied for alloying light alloys based on aluminum and magnesium comparatively recently. In this review, the application fields of metallic calcium and its influence on the structure and properties of various alloys are considered. Alloys based on aluminum–calcium eutectic have been systematically investigated over last few years, and it has been established that they possess casting properties no worse than these of silumins, and they can be hot-rolled and cold-rolled with a high degree of deformation. Ternary and more complex phase diagrams of systems including calcium are constructed and multicomponent alloys based on them are investigated. All these circumstances make it possible to outline several groups of new promising Ca-containing aluminum alloys: (i) alloys hardening without quenching due to the isolation of nanodimensional particles of Al3Zr, Al3Sc, and Al3(Zr,Sc) phases; (ii) high-strength alloys alloyed with traditional hardening elements of the aluminum solid solution, such as zinc and magnesium; and (iii) composite alloys having more than 20% eutectic intermetallic compounds in the structure. All these materials have reduced density, an improved set of operational properties, increased corrosion resistance, and high manufacturability when producing cast and deformed half-finished products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tcegel’nik E. From it the Great Wall of China was built, Atom. Strateg., 2005, no. 19, pp. 27–30.

    Google Scholar 

  2. Doronin, N.A., Metallurgiya kal’tsiya (Metallurgy of Calcium), Moscow: Atomizdat, 1959.

    Google Scholar 

  3. Mantell, C.L. and Hardy, C., Calcium: its metallurgy and technology, Mater. 66th General Meeting, NewYork, 1934.

    Google Scholar 

  4. Doronin, N.A., Kal’tsii (Calcium), Moscow: Gosatomizdat, 1962.

    Google Scholar 

  5. Drits, M.E. and Zusman, L.L., Splavy shchelochnykh i shchelochnozemel’nykh metallov: Spravochnik (Alloys of Alkali and Alkali-Earth Metals: Reference Book), Moscow: Metallurgiya, 1986.

    Google Scholar 

  6. Shaw, A., Tian, L., and Russell, A., Tensile properties of high-purity Ca metal, British J. Appl. Sci. Technol., 2016, vol. 15, no. 6, pp. 1–6.

    Article  Google Scholar 

  7. Gulyaev, A.P., Metallovedenie (Physical Metallurgy), Moscow: Metallurgiya, 1986.

    Google Scholar 

  8. Zinov’ev, Yu.A., Kolpakov, A.A., Kuznetsov, S.V., Shvetsov, V.D., and Belyavskii, G.I., Effect of modifying additives on the formation of graphite in highstrength cast iron and shrinkage defects in castings, Tr. Nizhegorod. Gos. Tekh. Univ., 2015, no. 02 (109).

  9. Davydov, S.V. and Panov, A.G., Trends in the development of modifiers for iron and steel, Zagot. Proizv. Mashinostr., 2007, no. 1, pp. 3–11.

    Google Scholar 

  10. Bor, kal’tsii, niobii, tsirkonii v chugune i stali (Boron, Calcium, Niobium, and Zirconium in Cast Iron and Steel), Vinarov, S.M., Ed., Moscow: Metallurgizdat, 1961.

  11. Svyazhin, A.A., Krushke, E., and Svyazhin, A.G., Application of calcium carbide in low-carbon steel smelting, Metallurg, 2004, no. 11, pp. 43–45.

    Google Scholar 

  12. Arkharov, V.I., Teoriya mikrolegirovaniya splavov (Microalloying Theory of Alloys), Moscow: Metallurgiya, 1975.

    Google Scholar 

  13. Golubtsov, V.A., Mizin, V.G., and Kadarmetov, A.Kh., Improving the quality of steel using microalloying, modifying and inoculating methods, Byull. NTI ChM, 1990, no. 2, pp. 19–23.

    Google Scholar 

  14. Dyudkin, D.A., Features of the complex effect of calcium on the properties of liquid and solid steel, Stal’, 1999, no. 1, pp. 20–25.

    Google Scholar 

  15. Sanbongi, K., Regulation of the shape of sulphides in steel using rare earth metals or calcium, Tetsu-to-Hagane, 1978, vol. 64, no. 1, pp. 145–154.

    Article  Google Scholar 

  16. Khaida, O., Optimization of morphological control of sulphides in large ingots due to the treatment of molten steel with calcium and rare earth elements, Tetsu-to-Hagane, 1978, vol. 64, no. 10, pp. 48–57.

    Google Scholar 

  17. Lu, D.-Z., Irons, G.A., and Lu, W.-K., Kinetics and mechanisms of calcium absorption and inclusion modification of steel, in: Proc. Scaninject VI,Luleå, Sweden, 1992, pp. 239–263.

    Google Scholar 

  18. Zhang, L. and Thomas, B.G., Literature review: inclusions in steel ingot casting, Metall. Mater. Trans. B, 2006, vol. 37B, no. 5, pp. 733–761.

    Article  CAS  Google Scholar 

  19. Holappa, L., Lind, M., Liukkonem, M., and Hamalainen, M. Thermodynamic examination of inclusion modification and precipitation from calcium treatment to solidified steel, Ironmak. Steelmak., 2003, vol. 30, pp. 111–115.

    Article  CAS  Google Scholar 

  20. Herrera, M., Castro, F., Castro, M., Mendez, M., and Solis, H., Modification of Al2O3 inclusions in medium carbon aluminum steels by AlCaFe additions, Ironmak. Steelmak., 2006, vol. 33, no. 151, pp. 33–35.

    Google Scholar 

  21. Pires, C.S.S. and Garcia, A., Modification of oxide inclusions present in aluminum-killed low carbon steel by addition of calcium, Metal. Mater., 2004, vol. 57, pp. 183–189.

    Google Scholar 

  22. Stroganov, G.B., Rotenberg, V.A., and Gershman, G.B., Splavy alyuminiya s kremniem (Aluminum Alloys with Silicon), Moscow: Metallurgiya, 1977.

    Google Scholar 

  23. Sletova, N.V., Chaikin, V.A., Zadrutskii, S.P., Rozum, V.A., and Panasyugin, A.S., Thermodynamic modeling of chemical reactions of calcium carbonate in aluminum melt, Liteishch. Ross., 2013, no. 4, pp. 31–35.

    Google Scholar 

  24. Novikov, I.I., Zolotorevskii, V.S., Portnoi, V.K., Belov, N.A., Livanov, D.V., Medvedeva, S.V., Aksenov, A.A., and Evseev, Yu.V., Metallovedenie: Uchebnik. T. 2. Termicheskaya obrabotka. Splavy (Physical Metallurgy: Textbook, vol. 2. Heat Treatment. Alloys), Moscow: MISIS, 2009.

    Google Scholar 

  25. Rusin, A., Hegai, L., and Tokarchuk, S., Svintsovye splavy dlya sovremennykh akkumulyatorov. Teoriya i praktika (Lead Alloys for Modern Batteries. Theory and Practice), Vladivostok: Dal’nauka, 2008.

    Google Scholar 

  26. Prengaman, R.D., Challenges from corrosion-resistant grid alloys in lead acid battery manufacturing, J. Power Sour., 2001, vol. 95, pp. 224–233.

    Article  CAS  Google Scholar 

  27. Portnoi, K.I. and Lebedev, A.A., Magnievye splavy (svoistva i tekhnologiya): Spravochnik (Magnesium Alloys (Properties and Technology). Handbook), Moscow: Metallurgizdat, 1952.

    Google Scholar 

  28. Koltygin, A. V., Improvement of the properties of magnesium alloys of the Mg–Al–Zn–Mn system), in: Tr. 2 Mezhdunarodnoi nauchno-prakticheskoi konferentsii “Sovremennye materialy i tekhnologii v mashinostroenii” (Works of the 2nd Int. Sci. and Pract. Conf. “Modern Materials and Technologies in Mechanical Engineering”), Moscow: MISIS, 2011, pp. 54–55.

    Google Scholar 

  29. Polmear, I.J., Light Metals: From Traditional Alloys to Nanocrystals, Butterworth-Heinemann: Elsevier, 2006, 4rd ed.

    Google Scholar 

  30. Trojanová, Z., Palcek, P., Lukác, P., and Drozd, Z., Chapter 1. Influence of solute atoms on deformation behaviour of selected magnesium alloys, in: Materials Science “Metals and Nonmetals”, Czerwinski, F., Ed., 2014, vol. 5, pp. 3–47.

    Google Scholar 

  31. Nie, J.F., Magnesium alloys, Scripta Mater., 2003, vol. 48, pp. 981–984.

    Article  CAS  Google Scholar 

  32. Wadsworth, J., Ruano, O.A., and Sherby, O.D., Denuded zones, diffusional creep, and grain boundary sliding, Metall. Mater. Trans. A., 2002, vol. 33A, pp. 219–229.

    Article  CAS  Google Scholar 

  33. Aljarrah, M. and Medraj, M., Thermodynamic modelling of the Mg–Ca, Mg–Sr, Ca–Sr and Mg–Ca–Sr systems using the modified quasichemical model, Calphad, 2008, vol. 32, pp. 240–251.

    Article  CAS  Google Scholar 

  34. Aljarrah, M., Medraj, M., Wanga, X., Essadiqi, E., Muntasar, A., and Denes, G., Experimental investigation of the Mg–Al–Ca system, J. Alloys Compd, 2007, vol. 436, pp. 131–141.

    Article  CAS  Google Scholar 

  35. Suzuki, A., Saddock, N.D., Jones, J.W., and Pollock, T.M., Solidification paths and eutectic intermetallic phases in Mg–Al–Ca ternary alloys, Acta Mater., 2005, vol. 53, pp. 2823–2834.

    Article  CAS  Google Scholar 

  36. Rokhlin, L. L. and Nikitina, N. I., Effect of calcium on the properties of alloys of the Mg-Al system, Metalloved. Term. Obrab. Met., 2003, no. 5, pp. 14–17.

    Google Scholar 

  37. Xu, S.W., Oh-ishi, K., Kamado, S., Uchida, F., Homma, T., and Hono, K., High-strength extruded Mg–Al–Ca–Mn alloy, Scripta Mater., 2011, vol. 65, pp. 269–272.

    Article  CAS  Google Scholar 

  38. Kim, W.J. and Lee, Y.G., High-strength Mg–Al–Ca alloy with ultrafine grain size sensitive to strain rate, Mater. Sci. Eng., 2011, vol. 528, pp. 2062–2066.

    Article  CAS  Google Scholar 

  39. Olivier, B., The influence of Ca-additions on the mechanical properties of T300-Cfibre/MG(Al) metal matrix composites, in: Magnesium Alloys and Their Applications, Kainer, K.U., Ed., Weinheim: Wiley, 2000, pp. 215–220.

    Google Scholar 

  40. Pekguleryuz, M., Creep Resistance in Mg–Al–Ca casting alloys, Magnes. Technol., 2000, vol. 3, pp. 279–284.

    Google Scholar 

  41. Janz, A., Gröbner, J., Cao, H., Zhu, J., Chang, Y.A., and Schmid-Fetzer, R., Thermodynamic modeling of the Mg–Al–Ca system, Acta Mater., 2009, vol. 2, pp. 682–694.

    Article  CAS  Google Scholar 

  42. Koray, O., Zhong, Y., Liu, Z.K., and Luo, A., Computational thermodynamics and experimental investigation of the Mg–Al–Ca–Sr alloys, Proc. Miner., Metal. Mater. Soc. (TMS), 2002, vols. 17–21, pp. 69–73.

    Google Scholar 

  43. Xue-Nan Gu and Yu-Feng Zheng, A review on magnesium alloys as biodegradable materials, Front. Mater. Sci. China, 2010, vol. 4, pp. 111–115.

    Article  Google Scholar 

  44. Rosemann, P., Schmidt, and J. Heyn, A., Short and long term degradation behaviour of Mg–1Ca magnesium alloys and protective coatings based on plasma chemical oxidation and biodegradable polymer coating in synthetic body fluid. Mater. Corros., 2013, vol. 64, no. 8, pp. 714–722.

    Article  CAS  Google Scholar 

  45. Berglund, I.S., Brar, H.S., Dolgova, N., Acharya, A.P., Keselowsky, B.G., Sarntinoranont, M., and Manuel, M.V., Synthesis and characterization of Mg–Ca–Sr alloys for biodegradable orthopedic implant applications, J. Biomed. Mater. Res. B. Appl. Biomater., 2012, vol. 100B, no. 6, pp. 1524–1534.

    Article  CAS  Google Scholar 

  46. Rosalbino, F., De Negri, S., Saccone, A., Angelini, E., and Delfino, S., Bio-corrosion characterization of Mg–Zn–X (X = Ca, Mn, Si) alloys for biomedical applications, J. Mater. Sci.: Mater. Med., 2010, vol. 21, no. 4, pp. 1091–1098.

    CAS  Google Scholar 

  47. Bakhsheshi, Rad H.R., Hamzah, E., Lotfabadi, A.F., Daroonparvar, V., Yajid, M.A.M., and Islam, M.M., Micro-structure and bio-corrosion behavior of Mg–Zn and Mg–Zn–Ca alloys for biomedical applications, Mater. Corros., 2014, vol. 65, no. 12, pp. 1178–1187.

    Article  CAS  Google Scholar 

  48. Zhang, B., Hou, Y., Wang, X., Wang, Y., and Geng, L., Mechanical properties, degradation performance and cytotoxicity of Mg–Zn–Ca biomedical alloys with different compositions, Mater. Sci. Eng.: C, 2011, vol. 31, no. 8, pp. 1667–1673.

    Article  CAS  Google Scholar 

  49. Hofstetter, J., Becker, M., Martinelli, E., Weinberg, A.M., Mingler, B., Kilian, H., Pogatscher, S., Uggowitzer, P.J., and Löffler, J.F., High-strength low-alloy (HSLA) Mg–Zn–Ca alloys with excellent biodegradation performance, JOM, 2014, vol. 66, no. 4, pp. 566–572.

    Article  CAS  Google Scholar 

  50. Aluminum: Properties and Physical Metallurgy, Hatch, J.E., Ed., Ohio: ASM, 1984.

  51. Altenpohl, D.G., Aluminum: Technology, Applications, and Environment, Aluminum Ass. and TMS, 1998.

    Google Scholar 

  52. Aluminum and Its Alloys, Epstein, S.G., Ed., Aluminum Ass., 1994.

  53. King, F., Aluminum and Its Alloys, Ellis Horwood, 1987.

    Google Scholar 

  54. Piatti, G., Pellegrini, G., and Trippodo, D., The tensile properties of a new superplastic alluminum alloy: Al–Al4Ca eutectic, J. Mater. Sci., 1976, vol. 1, pp. 168–190.

    Google Scholar 

  55. Moore, D.M. and Morris, L.R., UK Patent 1580281, 1978.

    Google Scholar 

  56. Moore, D.M. and Morris, L.R., A new superplastic aluminum sheet alloy, Mater. Sci. Eng., 1980, vol. 43, no. 1, pp. 85–92.

    Article  CAS  Google Scholar 

  57. Il’enko, V.M., Superplasticity of eutectic alloys based on the aluminum-calcium system and development of materials for superplastic forming, Cand. Sci. Dissertation, Moscow: MISIS, 1985.

    Google Scholar 

  58. Swaminathan, K. and Padmanabhan, K. A., Tensile flow and fracture behaviour of a superplastic Al–Ca–Zn alloy, J. Mater. Sci., 1990, vol. 25, no. 11, pp. 4579–4586.

    Article  CAS  Google Scholar 

  59. Perez-Prado, M.T., Cristina, M.C., Ruano, O. A., and Gonza, G., Microstructural evolution of annealed Al–5% Ca–5% Zn sheet alloy, J. Mater. Sci., 1997, vol. 32, pp. 1313–1318.

    Article  CAS  Google Scholar 

  60. Kono, N., Tsuchida, Y., Muromachi, S., and Watanabe, H., Study of the AlCaZn ternary phase diagram, Light Metals, 1985, vol. 35, pp. 574–580.

    Article  CAS  Google Scholar 

  61. Russell, A.M., Chumbley, L.S., and Tian, Y., Structure-property relationships in an Al matrix Ca nanofilamentary composite conductor with potential application in high-voltage power transmission, Adv. Eng. Mater., 2000, vol. 2, pp. 11–22.

    Article  CAS  Google Scholar 

  62. Shaw, A., Tian, L., and Russell, A.M., Tensile properties of high-purity Ca metal, British J. Appl. Sci. Technol., 2016, vol. 15, no. 6, pp. 1–6.

    Article  Google Scholar 

  63. Sakata, M., Nakamoto, Y., Shimizu, K., Matsuoka, T., and Ohishi, Y., Superconducting state of Ca–VII below a critical temperature of 29 K at a pressure of 216 GPa, Phys. Rev. B, 2011, vol. 83, pp. 220–512.

    Google Scholar 

  64. Tian, L., Kim, H., Anderson, I., and Russell, A., The microstructure-strength relationship in a deformation processed Al–Ca composite, Mater. Sci. Eng., 2013, vol. 570, pp. 106–113.

    Article  CAS  Google Scholar 

  65. Tian, L., Anderson, I., Riedemann, T., Russell, A., and Kim, H., Prospects for novel deformation processed Al/Ca composite conductors for overhead high voltage direct current (HVDC) power transmission, Electr. Pow. Syst. Res., 2013, vol. 105, pp. 105–114.

    Article  Google Scholar 

  66. Kim, H., Al–Ca and Al–Fe metal-metal composite strength, conductivity, and microstructure relationships, PhD Thesis, Ames: Iowa State Univ., 2011, pp. 1–95.

    Google Scholar 

  67. Zolotorevskiy, V.S., Belov, N.A., and Glazoff, M.V., Casting Aluminum Alloys, Amsterdam: Elsevier, 2007.

    Book  Google Scholar 

  68. Belov, N.A., Alabin, A.N., and Eskin, D.G., Improving the properties of cold rolled Al-6%Ni sheets by alloying and heat treatment, Scripta Mater., 2004, vol. 50, no. 1, pp. 89–94.

    Article  CAS  Google Scholar 

  69. Ratke, L. and Alkemper, J., Ordering of the fibrous eutectic microstructure of Al–Al3Ni due to accelerated solidification conditions, Acta Mater., 2000, vol. 48, pp. 1939–1948.

    Article  CAS  Google Scholar 

  70. Li Xi, Fautrelle Yves, Ren Zhongming, Zhang Yudong, and Esling Claude, Effect of a high magnetic field on the Al–Al3Ni fiber eutectic during directional solidification, Acta Mater., 2010, vol. 58, pp. 2430–2441.

    Article  CAS  Google Scholar 

  71. Belov, N.A. and Zolotorevskij, V.S., The effect of nickel on the structure, mechanical and casting properties of aluminium alloy of 7075 type, Mater. Sci. Forum, 2002, vol. 396–402, pp. 935–940.

    Article  Google Scholar 

  72. Belov, N.A., Naumova, E.A., and Eskin, D.G., Casting alloys of the Al–Ce–Ni system: microstructural approach to alloy design, Mater. Sci. Eng. A, 1999, vol. 271, pp. 134–142.

    Article  Google Scholar 

  73. Goto, S., Kim, B., Park, H., Belov, N.A., Zolotorevkij, V.S., Aso, S., and Komatsu, Y., Application of eutectics to development of high strength cast aluminum alloys, J. Soc. Mater. Eng. Res. Japan, 2002, vol. 15, no. 2, pp. 66–73.

    Article  CAS  Google Scholar 

  74. Belov, N.A. and Khvan, A.V., The ternary Al–Ce–Cu phase diagram in the aluminum-rich corner, Acta Mater., 2007, vol. 55, pp. 5473–5782.

    Article  CAS  Google Scholar 

  75. Belov, N.A., Khvan, A.V., and Alabin, A.N., Microstructure and phase composition of Al–Ce–Cu alloys in the Al-rich corner, Mater. Sci. Forum, 2006, vols. 519–521, pp. 395–400.

    Article  Google Scholar 

  76. Belov N.A. Principles of optimizing the structure of creep-resisting casting aluminium alloys using transition metals, J. Adv. Mater., 1994, vol. 1, no. 4, pp. 321–329.

    Google Scholar 

  77. Naumova, E.A., Belov, N.A., and Bazlova, T.A., Effect of heat treatment on structure and strengthening of cast eutectic aluminum alloy Al9Zn4Ca3Mg, Metal Sci. Heat Treatment, 2015, vol. 57, pp. 1–7.

    Article  CAS  Google Scholar 

  78. Belov, N.A., Naumova, E.A., and Akopyan, T.K., Effect of calcium on structure, phase composition and hardening of Al–Zn–Mg alloys containing up to 12 wt Zn, Mater. Res., 2015, vol. 18, no. 6, pp. 1384–1391.

    Article  CAS  Google Scholar 

  79. Belov, N.A., Naumova, E.A., Bazlova, T.A., and Alekseeva, E.V., Structure, phase composition, and strengthening of cast Al–Ca–Mg–Sc alloys, Phys. Metal. Metallograph., 2016, vol. 117, no. 2, pp. 199–205.

    Article  CAS  Google Scholar 

  80. Belov, N.A., Naumova, E.A., Alabin, A.N., and Matveeva, I.A., Effect of scandium on structure and hardening of Al–Ca eutectic alloys, J. Alloys Compd., 2015, vol. 646, pp. 741–747.

    Article  CAS  Google Scholar 

  81. Belov, N.A., Naumova, E.A., and Akopyan, T.K., Evtekticheskie splavy na osnove alyuminiya: novye sistemy legirovaniya (Aluminum-Based Eutectic Alloys: New Alloying Systems), Moscow: Ruda i Metally, 2016.

    Google Scholar 

  82. Belov, N.A., RF Patent 2478132, 2013.

    Google Scholar 

  83. Kevorkov, D. and Schmid-Fetzer, R., The Al–Ca system. Pt. 1: Experimental investigation of phase equilibria and crystal structures, Z. Metallkd., 2001, Bd. 92, no. 8, S. 946–952.

    CAS  Google Scholar 

  84. Kevorkov, D., Schmid-Fetzer, R., Pisch, A., Hodaj, F., and Colinet, C., The Al–Ca system. Pt. 2: Calorimetric measurements and thermodynamic assessment, Z. Metallkd., 2001, Bd. 92, no. 8, S. 953–958.

    CAS  Google Scholar 

  85. Hansen, M. and Anderko, K., Constitution of Binary Alloys, McGraw-Hill, 1965, vol. 1.

  86. Mondolfo, L.F., Aluminum Alloys: Structure and Properties, London/Boston: Butterworths, 1976.

    Google Scholar 

  87. Ternary Alloys: A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams, Petzow, G. and Effenberg, G., Eds., Wiley, 1990, vol. 3.

  88. Information on www.thermocalc.com (accessed: October 5, 2017).

  89. Toropova, L.S., Eskin, D.G., Kharakterova, M.L., and Dobatkina, T.V., Advanced Aluminum Alloys Containing Scandium: Structure and Properties, Amsterdam: Gordon and Breach Science, 1998.

    Google Scholar 

  90. Øyset, R.and Ryum, N., Scandium in aluminum alloys, Int. Mater. Rev., 2005, vol. 50, pp. 19–44.

    Article  CAS  Google Scholar 

  91. Marquis, E.A. and Seidman, D.N., Nanoscale structural evolution of Al3Sc precipitates in Al (Sc) alloys, Acta Mater., 2001, vol. 49, pp. 1909–1919.

    Article  CAS  Google Scholar 

  92. Costa, S., Puga, H., Barbosa, J., and Pinto, A.M.P., The effect of Sc additions on the microstructure and age hardening behaviour of as cast Al–Sc alloys, Mater. Des., 2012, vol. 42, pp. 347–352.

    Article  CAS  Google Scholar 

  93. Van Dalen, M.E., Gyger, T., Dunand, D.C., and Seidman, D.N., Effects of Yb and Zr microalloying additions on the microstructure and mechanical properties of dilute Al–Sc alloys, Acta Mater., 2011, vol. 59, pp. 7615–7626.

    Article  CAS  Google Scholar 

  94. Filatov, Yu.A., Deformable Al–Mg–Sc alloys and possible regions of their application, J. Adv. Mater., 1995, vol. 5, pp. 386–390.

    Google Scholar 

  95. Filatov, Yu.A., Yelagin, V.I., and Zakharov, V.V., New Al–Mg–Sc alloys, Mater. Sci. Eng. A, 2000, vol. 280, pp. 97–101.

    Article  Google Scholar 

  96. Yu-Chih Tzeng, Chih-Ting Wu, Hui-Yun Bor, Jain-Long Horng, Mu-Lin Tsai, and Sheng-Long Lee, Effects of scandium addition on iron-bearing phases and tensile properties of Al–7Si–0.6Mg alloys, Mater. Sci. Eng. A, 2014, vol. 593, pp. 103–110.

    Article  CAS  Google Scholar 

  97. Bao Li, Hongwei Wang, Jinchuan Jie, and Zunjie Wei, Effects of yttrium and heat treatment on the microstructure and tensile properties of Al–7.5Si–0.5Mg alloy, Mater. Des., 2011, vol. 32, pp. 1617–1622.

    Article  CAS  Google Scholar 

  98. Abdulwahab, I.A., Madugu, S.A., Yaro, S.B., Hassan, A.P., and Popoola, I., Effects of multiple-step thermal ageing treatment on the hardness characteristics of A356.0-type Al–Si–Mg alloy, Mater. Des., 2011, vol. 32, pp. 1159–1166.

    Article  CAS  Google Scholar 

  99. Hengcheng Liao, Yuna Wu, and Ke Ding, Hardening response and precipitation behavior of Al–7% Si–0.3% Mg alloy in a pre-aging process, Mater. Sci. Eng. A, 2013, vol. 560, pp. 811–816.

    Article  CAS  Google Scholar 

  100. Marlaud, T., Deschamps, A., Bley, F., Lefebvre, W., and Baroux B., Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al–Zn–Mg–Cu alloy, Acta Mater., 2010, vol. 58, pp. 4814–4826.

    Article  CAS  Google Scholar 

  101. Marlaud, T., Deschamps, A., Bley, F., Lefebvre, W., and Baroux, B., An influence of alloy composition and heat treatment on precipitate composition in Al–Zn–Mg–Cu alloys, Acta Mater., 2010, vol. 58, pp. 248–260.

    Article  CAS  Google Scholar 

  102. Du, Z.W., Sun, Z.M., Shao, B.L., Zhou, T.T., and Chen, C.Q., Quantitative evaluation of precipitates in an Al–Zn–Mg–Cu alloy after isothermal aging, Mater. Characterization, 2006, vol. 56, pp. 121–128.

    Article  CAS  Google Scholar 

  103. Junzhou Chen, Liang Zhen, Shoujie Yang, and Wenzhu Shao Dai, Investigation of precipitation behavior and related hardening in AA7055 aluminum alloy, Mater. Sci. Eng. A, 2009, vol. 500, pp. 34–42.

    Article  CAS  Google Scholar 

  104. Starink, M. J. and Wang, S. C., A model for the yield strength of overaged Al–Zn–Mg–Cu alloys, Acta Mater., 2003, vol. 51, pp. 5131–5150.

    Article  CAS  Google Scholar 

  105. Marlaud, T., Deschamp, A., Bley, F., Lefebvre, W., and Baroux, B., Influence of alloy composition and heat treatment on precipitate composition in Al–Zn–Mg–Cu alloys, Acta Mater., 2010, vol. 58, pp. 248–260.

    Article  CAS  Google Scholar 

  106. Senkov, O.N., Shagiev, M.R., Senkova, S.V., and Miracle, D.B., Precipitation of Al3(Sc,Zr) particles in an Al–Zn–Mg–Cu–Sc–Zr alloy during conventional solution heat treatment and its effect on tensile properties, Acta Mater., 2008, vol. 56, pp. 3723–3738.

    Article  CAS  Google Scholar 

  107. Yanxia Ii, Ping Li, Gang Zhao, Xiaotao Liu, and Jianzhong Cui, The constituents in Al–10Zn–2.5Mg–2.5Cu aluminum alloy, Mater. Sci. Eng. A, 2005, vol. 397, pp. 204–208.

    Article  CAS  Google Scholar 

  108. Webster, D., Wald C., and Cremens, W. S., Mechanical properties and microstructure of argon atomized aluminum-lithium powder metallurgy alloys, Metall. Mater. Trans. A, 1981, vol. 12, no. 8, pp. 1495–1502.

    Article  CAS  Google Scholar 

  109. Gilman, P.S. and Nix, W.D., The structure and properties of aluminum alloys produced by mechanical alloying powder processing and resultant powder structures, Metall. Mater. Trans. A, 1981, vol. 12A, pp. 813–824.

    Article  Google Scholar 

  110. Millan, P.P., Applications of high-temperature powder metal aluminum alloys to small gas turbines, J. Metals, 1983, vol. 35, no. 3, pp. 76–81.

    Google Scholar 

  111. Prasad, S.D. and Krishna, R.A., Production and mechanical properties of A356.2/RHA. Composites, Int. J. Adv. Sci. Technol., 2011, vol. 33, pp. 51–58.

    Google Scholar 

  112. Mizuuchi, K., Takeuchi, T., Fukusumi, M., Sugioka, M., and Nagai, H., Effect of processing condition on the properties of Al/Al3Ti composites produced by LCCS process, J. Japan Inst. Met., 1998, vol. 62, no. 10, pp. 893–898.

    Article  CAS  Google Scholar 

  113. Tham, L.M., Gupta, M., and Cheng, L., Effect of limited matrix-reinforcement interfacial reactions on enhancing the mechanical properties of aluminum-silicon carbide composites, Acta Mater., 2001, vol. 49, no. 16, pp. 3243–3253.

    Article  CAS  Google Scholar 

  114. Konkevich, V.Yu., Granulated aluminum alloys for aircraft application welded structure, Weld. World, 1994, vol. 33, no. 6, pp. 430–432.

    CAS  Google Scholar 

  115. Jones, H., Development in aluminum alloys by solidification at higher cooling rates, Aluminum, 1978, vol. 4, pp. 274–288.

    Google Scholar 

  116. Adkins, N.J.E., Saunders, N., and Tsakiropoulos, P., Rapid solidification of peritectic aluminum alloys, Mater. Sci. Eng., 1988, vol. 98, pp. 217–219.

    Article  CAS  Google Scholar 

  117. Bose, S. K. and Kumar, R., Structure of rapidly solidified aluminium-silicon alloys, J. Mater. Sci., 1973, vol. 8, no. 12, pp. 1795–1799.

    Article  CAS  Google Scholar 

  118. Belov, N.A., Aluminium casting alloys with high content of zirconium, Mater. Sci. Forum, 1996, vols. 217–222, pp. 293–298.

    Article  Google Scholar 

  119. Belov, N.A., Alabin, A.N., Eskin, D.G., and Istomin-Kastrovskiy, V.V., Optimization of hardening of Al–Zr–Sc casting alloys, J. Mater. Sci., 2006, vol. 41, pp. 5890–5899.

    Article  CAS  Google Scholar 

  120. Knipling, K.E., Karnesky, R.A., Lee, C.P., Dunand, D.C., and Seidman, D.N., Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at %) alloys during isochronal ageing, Acta Mater., 2010, vol. 58, pp. 5184–5195.

    Article  CAS  Google Scholar 

  121. Fuller, C.B., and Seidman, D.N., Temporal evolution of the nanostructure of Al(Sc,Zr) alloys. Pt. II. Coarsening of Al3(Sc1-xZrx) precipitates, Acta Mater., 2005, vol. 53, pp. 5415–5428.

    Article  CAS  Google Scholar 

  122. Lefebvre, W., Danoix, F., Hallem, H., Forbord, B., Bostel, B., and Marthinsen, K., Precipitation kinetic of Al3(Sc,Zr) dispersoids in aluminum, J. Alloys Compd., 2009, vol. 470, pp. 107–110.

    Article  CAS  Google Scholar 

  123. Zolotorevskii, V.S. and Belov, N.A., Metallovedenie liteinykh alyuminievykh splavov (Metallurgy of Foundry Aluminum Alloys), Moscow: MISIS, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Naumova.

Additional information

Original Russian Text © E.A. Naumova, 2018, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Tsvetnaya Metallurgiya, 2018, No. 2, pp. 59–76.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naumova, E.A. Use of Calcium in Alloys: From Modifying to Alloying. Russ. J. Non-ferrous Metals 59, 284–298 (2018). https://doi.org/10.3103/S1067821218030100

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821218030100

Keywords

Navigation