Skip to main content
Log in

Comparative analysis of geo-engineering approaches to climate stabilization

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

Geo-engineering approaches to modern climate stabilization, irrelative to the Kyoto Protocol measures, are under consideration. Conditionally, these approaches are subdivided into two groups: purposive changes in the Earth radiation balance to compensate the greenhouse gas effect and removal of the excessive amount of carbon dioxide from the atmosphere. The first group includes such methods as injection of sulfate and other reflecting aerosols into the stratosphere, creation of orbital reflectors or reflectors at the Lagrange point, an increase in cloudiness over the World Ocean, and a change in the Earth surface albedo. Increased carbon dioxide uptake by forests, ocean, and artificial absorbers are considered within the second group. The methods considered were subject to a comparative analysis using the following criteria: possible fast realization, the ability to counteract the doubling of greenhouse gases, availability of natural analogs, impact on geophysical systems within natural variations, the absence of unacceptable ecological implications, possibility, if necessary, to immediately halt the action. The comparison showed that the use of stratospheric sulfate aerosols can be the most effective. It is emphasized that all geo-engineering directions can be realized simultaneously with the measures stipulated by the Kyoto Protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. L. Aleksandrov, Yu. A. Izrael, I. L. Karol, and A. Kh. Khrgian, The Earth’s Ozone Shield and its Changes (Gidrometeoizdat, St. Petersburg, 1992) [in Russian].

    Google Scholar 

  2. M. I. Budyko, Climate Change (Gidrometeoizdat, Leningrad, 1974) [in Russian].

    Google Scholar 

  3. M. I. Budyko, L. S. Gandin, O. A. Drozdov, et al., “Prospects of Global Climate Impacts,” Izv. Akad. Nauk, ser. Geogr., No. 2 (1974) [Izv., ser. Geography, No. 2 (1974)].

  4. Yu. A. Izrael, “Possible Preventions of Climate Change and its Negative Consequences,” in The Problems of the Kyoto Protocol, Ed. by Yu. A. Izrael (Nauka, Moscow, 2006) [in Russian].

    Google Scholar 

  5. Yu. A. Izrael, “About Modern Climate State and Suggestions on Actions to Counteract Climate Changes,” Meteorol. Gidrol., No. 10 (2008) [Russ. Meteorol. Hydrol., No. 10, 33 (2008)].

  6. Yu. A. Izrael, Radiation Fallouts after Nuclear Explosions and Accidents (Progress-Pogoda, St. Petersburg, 1996) [in Russian].

    Google Scholar 

  7. Yu. A. Izrael, “Role of Stratospheric Aerosols in the Maintenance of the Present-day Climate,” in Proceedings International Conference on Problems of Hydrometeorological Safety (Gidromettsentr RF, Moscow, 2006).

    Google Scholar 

  8. Yu. A. Izrael, “An Effecient Way to Regulate the Global Climate Is the Main Objective of the Solution of the Climate Problem,” Meteorol. Gidrol., No. 10 (2005) [Russ. Meteorol. Hydrol., No. 10 (2005)].

  9. Yu. A. Izrael, I. I. Borzenkova, and D. A. Severov, “Role of Stratospheric Aerosols in the Maintenance of Present-day Climate,” Meteorol. Gidrol., No. 1 (2007) [Russ. Meteorol. Hydrol., No. 1, 32 (2007)].

  10. Yu. A. Izrael, G. L. Leoznov, and A. A. Rasnovskii, “Possibilities of Space and Nuclear Technologies to Reform World Energy of the 21st Century,” Izv. Akad. Nauk, ser. Energetika, No. 3 (2008) [Izv., Ser. Energy, No. 3 (2008)].

  11. I. L. Karol, “Sizes of Radioactive Aerosols and their Transport in the Troposphere and Stratosphere,” Meteorol. Gidrol., No. 1 (1973) [Meteorol. Hydrol., No. 1 (1973)].

  12. K. Ya. Kondrat’ev, L. S. Ivlev, and G. A. Nikol’skii, “Integrated Studies of the Stratospheric Aerosol,” Meteorol. Gidrol., No. 9 (1974) [Meteorol. Hydrol., No. 9 (1974)].

  13. I. V. Petryanov-Smirnov and A. G. Sutugin, Aerosols (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  14. R. J. Andres and A. D. Kasgnoc, “A Time Averaged Inventory of Subaerial Volcanic Sulphur Emissions,” J. Geophys. Res., 103 (1998).

  15. R. Angel, “Feasibility of Cooling the Earth with a Cloud of Small Spacecraft near the Inner Lagrange Point (L1),” Proc. Nat. Acad. Sci. USA, No. 46, 103 (2006).

  16. J. K. Angell, “Estimated Impact of Agung, El Chichon, and Pinatubo Volcanic Eruptions on Global and Regional Total Ozone after Adjustment for the QBO,” Geophys. Res. Lett., 24 (1997).

  17. K. T. Bower, J. Choularton, J. Latham, et al., “Computational Assessment of a Proposed Technique for Global Warming Mitigation via Albedo Enhancement of Marine Stratocumulus Clouds,” Atmos. Res., 82 (2006).

  18. W. J. Broad, How to Cool a Planet? (Maybe) (2006), http://www.nytimes.com/2006/06/27/science/earth/27col.html?ei=5088&en=d0d351a5cf6b48d1&ex=1309060800&partner=rssnyt&emc=rss&pagewanted=all.

  19. W. H. Brune, R. Turco, W. A. Matthews, et al., “Stratospheric Processes: Observations and Interpretation,” in Scientific Assessment of Ozone: Depletion 1991. WMO Global Research and Monitoring Project (World Meteorological Organization, Geneva, 1992), Report No. 25, Ch. 4.

    Google Scholar 

  20. N. Cassar, M. L. Bender, B. A. Barnett, et al., “The Southern Ocean Biological Response to Aeolian Iron Depositions,” Science, No. 5841, 317 (2007).

  21. P. J. Crutzen, “Albedo Enhancement by Stratospheric Sulfur Injection: A Contribution to Resolve a Policy Dilemma?” Climate Change, 77 (2006).

  22. P. J. Crutzen, “The Possible Importance of COS for the Sulfate Layer of the Stratosphere,” Geophys. Res. Lett., 3 (1976).

  23. J. T. Early, “Space-based Solar Shield to Offset Greenhouse Effect,” J. Brit. Int. Soc., 42 (1989).

  24. J. Faber, B. Boon, M. Berk, et al., Climate Change: Scientific Assessment and Policy Analysis. Aviation and Maritime Transport in a Post 2012 Climate Policy Regime (The Netherlands Research Program on Scientific Assessment and Policy Analysis (WAB) for Climate Change, 2007), Report 500102 008 (CE Report 06.7153.59).

  25. B. W. Frost, “Phytoplankton Bloom on Iron Rations,” Nature, 383 (1996).

  26. W. B. Grant, E. V. Browell, J. Fishman, et al., “Aerosol-associated Changes in Tropical Stratosphere Ozone Following the Eruption of Mount Pinatubo,” J. Geophys. Res., No. D4, 99 (1994).

  27. J. Gribbin, Climatic Change. Pt. 2: Thermal Balance of the Earth (Cambridge University Press, Cambridge, 1977).

    Google Scholar 

  28. B. Haake, T. Rixen, T. Reemtsma, et al., “Processes Determining Seasonality and Interannual Variability of Settling Particle Fluxes to the Deep Arabian Sea,” in Particle Flux in the Ocean, SCOPE Report 57, Ed. by V. Ittekkot, P. Schafer, S. Honjo, and P. J. Depetris (John Wiley & Sons, Chichester, 1996).

    Google Scholar 

  29. W. Hall, Strategies against Climate Change (2006), http://www.spectrezine.org/environment/Hall2.htm.

  30. D. J. Hofmann, S. J. Oltmans, J. M. Harris, et al., “Ozonesonde Measurements at Hilo, Hawaii Following the Eruption of Pinatubo,” Geophys. Res. Lett., 20 (1993).

  31. IPCC. Climate Change 2001. IPCC Third Assessment Report. Working Group III: Mitigation (WMO, Geneva, 2001).

  32. IPCC. Special Report on Carbon Dioxide Capture and Storage. Published for the Intergovernmental Panel on Climate Change (WMO/UNEP, Cambridge University Press, Cambridge, 2005).

  33. Yu. A. Izrael and S. M. Semenov, “Critical Levels of Greenhouse Gases, Stabilization Scenarios, and Implications for the Global Decisions,” in Avoiding Dangerous Climate Change, Ed. by H. J. Schellnhuber, W. Cramer, N. Nakicenovic, et al. (Cambridge University Press, Cambridge, 2006).

    Google Scholar 

  34. C. E. Junge, “Sulfur in the Atmosphere,” J. Geophys. Res., 68 (1963).

  35. D. Keith, “Photophoretic Levitation of Aerosols for Geo-engineering,” Geophys. Res. Abstracts, 10 (2008), EGU2008-A-11400.

  36. D. E. Kinnison, K. E. Grant, P. S. Connet, et al., “The Chemical and Radiative Effects of the Mount Pinatubo Eruption,” J. Geophys. Res., 99 (1994).

  37. B. Kravitz, A. Robock, L. Oman, et al., “Acid Deposition from Stratospheric Geo-engineering with Sulfate Aerosols,” Geophys. Res. Lett., 2008 (submitted).

  38. Kyoto Protocol. The Kyoto Protocol to the UN Framework Convention on Climate Change (1998), http://unfccc.int/2860.php.

  39. K. S. Lackner, “Climate Change: A Guide to CO2 Sequestration,” Science, No. 5626, 300 (2003).

  40. L. Lane, K. Caldeira, R. Chatfield, and S. Longhoff, Workshop Report on Managing Solar Radiation, November 18–19, 2006, Ed. by L. Lane, K. Caldeira, R. Chatfield, and E. Langhoff (Report NASA/CP-2007-214558, 2007).

  41. J. Latham, “Cooling May Be Possible, but We Need Safety Data,” Nature, 447 (2007).

  42. B. Launder and J. M. T. Thompson, “Geoscale Engineering to Avert Dangerous Climate Change,” Philosophical Trans. Roy. Soc., 366 (2008).

  43. T. M. Lenton and N. E. Vaughan, “The Radiative Forcing Potential of Different Climate Geo-engineering Options,” Atmos. Chem. Phys. Discuss., 9 (2009).

  44. J. H. Martin, “Glacial-interglacial CO2 Change. The Iron Hypothesis,” Paleoocenography, 5 (1990).

  45. J. H. Martin and S. E. Fitzwater, “Iron Deficiency Limits Phytoplankton Growth in the Northeast Pacific Sub-Arctic,” Nature, 331 (1988).

  46. M. P. McCormick, L. W. Thomason, and C. R. Trepte, “Atmospheric Effect of the Mt. Pinatubo Eruption,” Nature, 373 (1995).

  47. NAS. Policy Implication of Greenhouse Warming: Mitigation, Adaptation, and the Science Base. Panel on Policy Implications of Greenhouse Warming (US National Academy of Science/National Academies Press, Washington, DC, 1992).

  48. T. H. Peng and W. S. Broecker, “Dynamical Limitations on Antarctic Iron Fertilization Strategy,” Nature, 349 (1991).

  49. S. S. Penner, A. M. Schneider, and E. M. Kennedy, “Active Measures for Reducing the Global Climate Impacts of Escalating CO2 Concentrations,” Acta Astronautica, 11 (1984).

  50. R. F. Pueschel, “Stratospheric Aerosols: Formation, Properties, Effects,” J. Aerosol Sci., No. 3, 27 (1996).

  51. W. J. Randel, F. Wu, J. M. Russell III, et al., “Ozone and Temperature Changes in the Stratosphere Following the Eruption of Mount Pinatubo,” J. Geophys. Res., No. D8, 100 (1995).

  52. A. Robock, “Volcanic Eruptions and Climate,” Rev. Geophys., No. 2, 38 (2000).

  53. J. F. Rosenfield, D. B. Considine, P. E. Meade, et al., “Stratospheric Effects of Mount Pinatubo Aerosol Studied with a Coupled Two-dimensional Model,” J. Geophys. Res., No. D3, 102 (1997).

  54. K. I. Roy and R. Kennedy, Mirro Smoke—Ameliorationg Climate Change with Giant Solar Sails. Whole Earth Review (2001), https://ssl.catalog.com/~ultimax.com/whitepapers/2001_3c.html.

  55. Y. Sahai, V. W. J. H. Kirchhoff, and P. C. Alvara, “Pinatubo Eruptions: Effects on Stratospheric O3 and SO2 over Brazil,” J. Atmos. and Solar-Terrestrial Physics, No. 3, 59 (1997).

  56. A. N. Salamatin, V. Yu. Lipenkov, N. I. Barkov, et al., “Ice-core Age Dating and Paleothermometer Calibration Based on Isotope and Temperature Profiles from Deep Boreholes at Vostok Station (East Antarctica),” J. Geophys. Res., No. D8, 103 (1998).

  57. W. Seifritz, “Mirrors to Halt Global Warming,” Nature, 340 (1989).

  58. T. G. Shepherd and W. J. Randel, “Key Issues Arising from the 2006 WMO/UNEP Ozone Assessment. Stratospheric Processes and their Role in Climate (SPARC),” Newsletter, No. 29 (2007).

  59. S. Solomon, “Stratospheric Ozone Depletion: A Review of Concepts and Theory,” Rev. Geophys., 37 (1999).

  60. G. Stenchikov, A. Robock, V. Ramaswamy, et al., “Arctic Oscillation Response to the 1991 Mt. Pinatubo Eruption: Effects of Volcanic Aerosols and Ozone Depletion,” J. Geophys. Res., 107 (2002).

  61. E. Teller, “The Planet Needs a Sunscreen,” Wall Street J., October 17 (1997).

  62. E. Teller, R. Hyde, and L. Wood, Active Climate Stabilization: Practical Physics-based Approaches to Prevention of Climate Change, Preprint UCRL-JC-148012 (Lawrence Livermore National Laboratory, Livermore, CA, 2002), www.llnl.gov/global-warm/148012.pdf.

    Google Scholar 

  63. E. Teller, L. Wood, and R. Hyde, Global Warming and Ice Ages: Prospects for Physics-based Modification of Global Change, Preprint UCRL-JC-128715 (Lawrence Livermore National Laboratory, Livermore, CA, 1997).

    Google Scholar 

  64. Ch. Textor, H. F. Graf, C. Timmreck, and A. Robock, “Emissions from Volcanoes,” in Emissions of Atmospheric Trace Compounds, Ed. by C. Granier, P. Artaxo, and C. Reeves (Kluwer, Dordrecht, 2004), Ch. 7.

    Google Scholar 

  65. M. A. Tolbert, M. J. Rossi, and D. M. Golden, “Heterogeneous Interactions of Chlorine Nitrate, Hydrogen Chloride, and Nitric Acid with Sulfuric Acid Surfaces at Stratospheric Temperatures,” Geophys. Res. Lett., No. 15, 8 (1988).

  66. T. A. Wigley, “A Combined Mitigation/Geo-engineering Approach to Climate Stabilization,” Science, 314 (2006).

  67. WMO (World Meteorological Organization) Scientific Assessment of Ozone Depletion: 2006, Global Ozone Research and Monitoring Project (WMO, Geneva, 2007), Report No. 5.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.A. Izrael, A.G. Ryaboshapko, N.N. Petrov, 2009, published in Meteorologiya i Gidrologiya, 2009, No. 6, pp. 5–24.

About this article

Cite this article

Izrael, Y.A., Ryaboshapko, A.G. & Petrov, N.N. Comparative analysis of geo-engineering approaches to climate stabilization. Russ. Meteorol. Hydrol. 34, 335–347 (2009). https://doi.org/10.3103/S1068373909060016

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373909060016

Keywords

Navigation