Skip to main content
Log in

High-Precision Simulation of Onboard Signal Receivers in Global Navigation Systems

  • Published:
Russian Engineering Research Aims and scope

Abstract

Aircrafts and spacecrafts that make use of global navigation satellite systems (GNSS) carry onboard signal receivers. The development of software for modeling the operation of such receivers is considered in this article. The plausible simulation of receiver operation is resolved into subsidiary problems. The formation of the satellites’ ephemeris data is important here. The proposed design approach is to develop an information system capable of monitoring the constellation of navigation satellites on the basis of the corresponding data files provided by different centers of GNSS analysis. The proposed approach is shown to be more effective than the available alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Bartenev, V.A., Grechkoseev, A.K., Kozorez, D.A., et al., Sovremennye i perspektivnye informatsionnye GNSS-tekhnologii v zadachakh vysokotochnoi navigatsii (Modern and Advanced Information GNSS Technologies for High Precision Navigation), Moscow: Fizmatlit, 2014.

  2. Veremeenko, K.K., Zheltov, S.Yu., Kim, N.V., et al., Sovremennye informatsionnye tekhnologii v zadachakh navigatsii i navedeniya bespilotnykh manevrennykh letatel’nykh apparatov (Modern Information Technologies for Navigation and Guidance of Unmanned Maneuverable Aircrafts), Moscow: Fizmatlit, 2009.

  3. Bobronnikov, V.T., Kozorez, D.A., Krasil’shchikov, M.N., et al., Statisticheskaya dinamika i optimizatsiya upravleniya letatel’nykh appratov (Statistical Dynamics and Control Optimization of Aircrafts), Moscow: Al’yans, 2013.

  4. Krasil’shchikov, M.N., Kozorez, D.A., and Sypalo, K.I., Analysis of conditions for ensuring operation of an intertial satellite navigation system of an unmannded aerial vehicle during interference, Autom. Remote Control, 2010, vol. 72, no. 3, pp. 431–444.

    Article  Google Scholar 

  5. Kozorez, D.A., Krasil’shchikov, M.N., Kruzhkov, D.M., et al., Integrated navigation system for a space vehicle on a geostationary or highly elliptic orbit operating in the presence of active jam, J. Comput. Syst. Sci. Int., 2013, vol. 52, no. 3, pp. 468–479.

    Article  Google Scholar 

  6. Kozorez, D.A., Krasil’shchikov, M.N., Kruzhkov, D.M., and Sypalo, K.I., A solution of the navigation problem for autonomous insertion of payload into a geostationary orbit using a low-thrust engine, J. Comput. Syst. Sci. Int., 2015, vol. 54, no. 1, pp. 104–115.

    Article  Google Scholar 

  7. Kozorez, D.A., Krasilshchikov, M.N., Kruzhkov, D.M., and Sypalo, K.I., Autonomous navigation during the final ascent of a spacecraft into the geostationary orbit. Autonomous integrated navigation system concept, J. Comput. Syst. Sci. Int., 2015, vol. 54, no. 5, pp. 798–807.

    Article  Google Scholar 

  8. Voiskovskii, A.P., Kozorez, D.A., Krasil’shchikov, M.N., et al., Autonomous navigation during the final ascent of a spacecraft into the geostationary orbit. II. Simulation of operation of an integrated autonomous SC navigation and control system J. Comput. Syst. Sci. Int., 2016, vol. 55, no. 5, pp. 785–795.

    Article  Google Scholar 

  9. Kim, R.V. and Kruzhkov, D.M., Modification of the functioning algorithms of the on-board integrated navigation system of an autonomous spacecraft, Tr. Mosk. Aviats. Inst., 2013, no. 68. https://mai.ru/upload/ iblock/1ed/1eda7c5c8ffacb1ad78f193e97b283db.pdf. Accessed January 12, 2019.

  10. Sypalo, K.I. and Podogova, A.A., Identification of aerodynamic force coefficients and moments of a high-speed aircraft during flight, Vestn. Mosk. Aviats. Inst., 2014, no. 20 (2), pp. 21–32.

  11. Aref’ev, R.O., Aref’eva, N.G., and Skrypnik, O.N., Improvement of the air navigation support of the landing by location optimization of GLONASS pseudo-satellites, Tr. Mosk. Aviats. Inst., 2017, no. 92. https:// mai.ru/upload/iblock/87e/arefev_arefeva_skrypnik_rus. pdf Accessed January 12, 2019.

  12. Ivanov, V.F. and Koshkarov, A.S., Improvement of the noise resistance of GLONASS consumer navigation equipment by integration with inertial navigation sensors, Tr. Mosk. Aviats. Inst., 2017, no. 93. http://trudymai.ru/upload/iblock/054/ivanov_koshkarov_rus.pdf. Accessed January 12, 2019.

  13. Kurshik, A.V., Modified navigation algorithm for determination of the position of artificial Earth satellites using GPS/GLONASS signals, Tr. Mosk. Aviats. Inst., 2013, no. 66. https://mai.ru/upload/iblock/d68/ d6820b6d3ad40e95892899b93c00a157.pdf. Accessed January 12, 2019.

  14. Vallado, D.A., Fundamentals of Astrodynamics and Applications, New York: Springer-Verlag, 2007, 3rd ed.

    MATH  Google Scholar 

  15. IERS Conventions (2010): IERS Technical Note 36, Frankfurt am Main: Verlag Bundesamts Kartographie Geodäsie, 2010, p. 179.

    Google Scholar 

  16. Global’naya sputnikovaya navigatsionnaya sistema GLONASS. Interfeisnyi kontrol’nyi dokument (redaktsiya 5.1) (Global Satellite Navigation System GLONASS: Interface Control Document Version 5.1), Moscow, 2008.

  17. Navstar GPS control segment to user support community interfaces (RFC-00041, ICD-GPS-870). 2011. http:// www.gps.gov/technical/icwg/ICD-GPS-870A.pdf. Accessed December 15, 2017.

  18. Parametry Zemli 1990 goda (PZ-90.11) (Earth Parameters in 1990 ((PZ-90.11))), Moscow, 2014.

  19. Global’naya sputnikovaya navigatsionnaya sistema GLONASS. Sistema vysokotochnogo opredeleniya efemeridno-vremennykh popravok. Interfeisnyi kontrol’nyi dokument (redaktsiya 3.0) (Global Satellite Navigation System GLONASS: A System for Highly Precise Determination of Ephemeris-Time Corrections, Interface Control Document Version 3.0), Moscow, 2010.

  20. GNSS ephemeris, 2015. http://www.glonass-svoevp.ru. http://www.glonass-svoevp.ru/index.php?option=com_ content&view=article&id=55&Itemid=109. Accessed December 15, 2015.

  21. GNSS ephemeris, 2015. ftp://ftp.glonass-iac.ru/IGS/. Accessed December 15, 2015.

  22. Novikov, S.V., Russian support for innovation and export growth, Russ. Eng. Res., 2018, vol. 38, no. 4, pp. 305–308.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Kruzhkov.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akimov, E.V., Kruzhkov, D.M. & Yakimenko, V.A. High-Precision Simulation of Onboard Signal Receivers in Global Navigation Systems. Russ. Engin. Res. 40, 152–155 (2020). https://doi.org/10.3103/S1068798X20020033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X20020033

Keywords:

Navigation