Skip to main content
Log in

Efficiency Estimation of Electrothermal Thrusters Use in the Control System of the Technological Spacecraft Motion

  • Flight Dynamics and Control of Flight Vehicles
  • Published:
Russian Aeronautics Aims and scope Submit manuscript

Abstract

The influence of various control systems of the orbital motion of a technological spacecraft on the level of microacceleration of its internal environment is simulated. Conclusions are drawn about the effectiveness of control systems with different actuators for realization of certain gravitationally sensitive processes onboard a spacecraft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrashkin, V.I., Zaitsev, A.S., Kazakova, A.E., Balakin, V.L., Belokonov, I.V., Voronov, K.E., Ivanov, V.V., Semkin, N.D., and Sazonov, V.V., Uncontrolled Attitude Motion of the Foton-12 Satellite and Quasi-Steady Microaccelerations Onboard It, Kosmicheskie Issledovaniya, 2003, no. 1, pp. 45–57 [Cosmic Research (Engl. Transl.), vol. 41, no. 1, pp. 39–50].

    Google Scholar 

  2. Lyubimov, V.V., Asymptotic Analysis of the Secondary Resonance Effects in the Rotation of a Spacecraft with Small Asymmetry in the Atmosphere, Izv. Vuz. Av. Tekhnika, 2014, vol. 57, no. 3, pp. 23–28 [Russian Aeronautics (Engl. Transl.), vol. 57, no. 3, pp. 245–252].

    Google Scholar 

  3. Anshakov, G.P., Belousov, A.I., and Sedel’nikov, A.V., The Problem of Estimating Microaccelerations Aboard Foton-M4 Spacecraft, Izv. Vuz. Av. Tekhnika, 2017, vol. 60, no. 1, pp. 80–86 [Russian Aeronautics (Engl. Transl.), 2017, vol. 60. no. 1, pp. 83–89].

    Google Scholar 

  4. Belousov, A.I., Sedelnikov, A.V., and Potienko, K.I., Study of Effective Application of Electric Jet Engine as a Mean to Reduce Microacceleration Level, Int. Review of Aerospace Engineering, 2015, vol. 8, no. 4, pp. 157–160.

    Article  Google Scholar 

  5. Belousov, A.I., Sedel’nikov, A.V., Molyavko, D.P., and Potienko, K.I., Organization of Pilot Batch Production in Space at the Present Stage, Nauchnoe Obozrenie, 2016, no. 17, pp. 186–194.

    Google Scholar 

  6. Belousov, A.I. and Sedel’nikov, A.V., Problems in Formation and Control of a Required Microacceleration Level at Spacecraft Design, Tests, and Operation, Izv. Vuz. Av. Tekhnika, 2014, vol. 57, no. 2, pp. 3–7 [Russian Aeronautics (Engl. Transl.), vol. 57, no. 2, pp. 111–117].

    Google Scholar 

  7. Khramov, A.A. and Ishkov, S.A., Optimization of Project-Ballistic Parameters for Low Earth Orbit Spacecraft with Propulsion Systems with Energy Storage, Izv. Vuz. Av. Tekhnika, 2016, vol. 59, no. 3, pp. 52–57 [Russian Aeronautics (Engl. Transl.), vol. 59, no. 3, pp. 351–357].

    Google Scholar 

  8. Abrashkin, V.I., Puzin, Y.Y., Voronov, K.E., Piyakov, I.V., Semkin, N.D., Sazonov, V.V., and Chebukov, S.Y., Rotational Motion of Foton M-4, Kosmicheskie Issledovaniya, 2016, vol. 54, no. 4, pp. 315–322 [Cosmic Research (Engl. Transl.), vol. 54, no. 4, pp. 296–302].

    Google Scholar 

  9. Bezglasnyi, S.P., Stabilization of Stationary Motions of a Gyrostat with a Cavity Filled with Viscous Fluid, Izv. Vuz. Av. Tekhnika, 2014, vol. 57, no. 4, pp. 7–10 [Russian Aeronautics (Engl. Transl.), vol. 57, no. 4, pp. 333–338].

    Google Scholar 

  10. Belousov, A.I. and Sedel’nikov, A.V., Probabilistic Estimation of Fulfilling Favorable Conditions to Realize the Gravity-Sensitive Processes Aboard a Space Laboratory, Izv. Vuz. Av. Tekhnika, 2013, vol. 56, no. 3, pp. 62–65 [Russian Aeronautics (Engl. Transl.), vol. 56, no. 3, pp. 297–302].

    Google Scholar 

  11. Sedelnikov, A.V., Classification of Microaccelerations According to Methods of their Control, Microgravity Science and Technology, 2015, vol. 27, no. 3, pp. 245–251.

    Article  Google Scholar 

  12. Sedel’nikov, A.V., Molyavko, D.P., and Khnyreva, E.S., About Decrease in Controllability of Spacecraft When Carrying Out Active Control Microaccelerations at the Operation Stage, Aviakosmicheskoe Priborostroenie, 2017, no. 4, pp. 25–34.

    Google Scholar 

  13. Falaleev, S.V. and Balyakin, V.B., Application of a Hydrogasdynamic Axial Vibration Damper for Reducing GTE Vibration, Izv. Vuz. Av. Tekhnika, 2014, vol. 57, no. 3, pp. 72–75 [Russian Aeronautics (Engl. Transl.), vol. 57, no. 3, pp. 314–318].

    Google Scholar 

  14. Falaleev, S.V., Trends in Research of Hydrodynamic Damping in Rotor Supports of Gas Turbine Engines, Izv. Vuz. Av. Tekhnika, 2017, vol. 60, no. 2, pp. 63–68 [Russian Aeronautics (Engl. Transl.), vol. 60, no. 2, pp. 229–235].

    Google Scholar 

  15. Kirilin, A.N., Akhmetov, R.N., Anshakov, G.P., Storozh, A.D., and Stratilatov, N.R., Bion Project—TsSKBProgress Contribution into Space Biology and Medicine, Polet, 2013, no. 11, pp. 3–16.

    Google Scholar 

  16. Sedelnikov, A.V. and Potienko, K.I., How to Estimate Microaccelerations for Spacecraft with Elliptical Orbit, Microgravity Science and Technology, 2016, vol. 28, no. 1, pp. 41–48.

    Article  Google Scholar 

  17. Sedelnikov, A.V. and Kireeva, A.A., Alternative Solution to Increase the Duration of Microgravity Calm Period on Board the Space Laboratory, Acta Astronautica, 2011, vol. 69, no. 6–7, pp. 480–484.

    Article  Google Scholar 

  18. Sedelnikov, A.V., Control of Microaccelerations as the Major Characteristics of Space Laboratory of Specialized Technological Appointment as Constructive Methods, Kontrol’. Diagnostika, 2014, no. 7, pp. 57–63.

    Article  Google Scholar 

  19. Abrashkin, V.I. and Puzin, Yu.Ya., Selecting Parameters of Systems for Controlling and Compensating Microaccelerations on Space Microgravitational Platform, Polet, 2011, no. 2, pp. 25–35.

    Google Scholar 

  20. Blinov, V.N., Shalay, V.V., Zubarev, S.I. et al. Issledovaniya elektrotermicheskikh mikrodvigatelei korrektiruyushchikh dvigatel’nykh ustanovok manevriruyushchikh malykh kosmicheskikh apparatov (Researches of Electrothermal Micromotors of the Correcting Propulsion Systems of the Maneuvering Small Spacecrafts), Omsk: OmGTU, 2014.

    Google Scholar 

  21. Blinov, V.N., Vavilov, I.S., Kositsin, V.V., Ruban, V.I., Khodoreva, E.V., and Shalay, V.V., The Studies of Small Space Vehicles Ammoniac Electrothermal Engine Units Desing and Structural Layout, Modern Applied Science, 2015, vol. 9, no. 5, pp. 337–357.

    Article  Google Scholar 

  22. Lukyanchik, A.I., Blinov, V.N., Vavilov, I.S., Kositsyn, V.V., and Ruban, V.I., The Analysis of Electric Rocket Motors for Small Spacecraft, Rossiya Molodaya: Peredovye Tekhnologii–v Promyshlennost’!, 2015, no. 1, pp. 335–341.

    Google Scholar 

  23. Blinov, V.N., Shalay, V.V., and Khodoreva, E.V., Selection and Testing of Thermal-Electric Micro-Engine with Independent Heating Element and Increasing Thrust, Omskii Nauchnyi Vestnik, 2012, no. 1 (107), pp. 62–67.

    Google Scholar 

  24. Sedelnikov, A.V., Molyavko, D.P., and Potienko, K.I., How Does Asymmetry of Solar Panels Influence Constructive Component of Microacceleration Field of Inner Environment of Space Laboratory, Microgravity Science and Technology, 2017, vol. 29, no. 4, pp. 305–311.

    Article  Google Scholar 

  25. Sedelnikov, A.V., Modeling of Microaccelerations Caused by Running of Attitude-Control Engines of Spacecraft with Elastic Structural Elements, Microgravity Science and Technology, 2016, vol. 28, no. 5, pp. 491–498.

    Article  Google Scholar 

  26. Sedelnikov, A.V., Evaluation of the Level of Microaccelerations on-Board of a Small Satellite Caused by a Collision of a Space Debris Particle with a Solar Panel, Jordan Journal of Mechanical and Industrial Engineering, 2017, vol. 11, no. 2, pp. 121–127.

    Google Scholar 

  27. Sedelnikov, A.V. and Potienko, K.I., Analysis of Reduction of Controllability of Spacecraft During Conducting of Active Control Over Microaccelerations, Int. Review of Aerospace Engineering, 2017, vol. 10, no. 3, pp. 160–166.

    Article  Google Scholar 

  28. Sedelnikov, A.V., Fast Analysis of Onboard Measurements of the Earth Magnetic Field for the Purpose of Microaccelerations Decrement on Board of the “AIST” Small Spacecraft During Its Uncontrolled Orbital Flight, Int. Review of Aerospace Engineering, 2018, vol. 11, no. 2, pp. 76–83.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Belousov.

Additional information

Original Russian Text © G.P. Anshakov, A.I. Belousov, A.V. Sedel’nikov, A.S. Gorozhankina, 2018, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Aviatsionnaya Tekhnika, 2018, No. 3, pp. 28–34.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anshakov, G.P., Belousov, A.I., Sedel’nikov, A.V. et al. Efficiency Estimation of Electrothermal Thrusters Use in the Control System of the Technological Spacecraft Motion. Russ. Aeronaut. 61, 347–354 (2018). https://doi.org/10.3103/S1068799818030054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068799818030054

Keywords

Navigation