Skip to main content
Log in

Nanoparticle formation during laser ablation of solids in liquids

  • Laser Spectroscopy
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The experimental data on the generation of metal and semiconductor nanoparticles during their laser ablation in liquids is reviewed. The dependence of the morphology of noble metal nanoparticles on the liquid type and laser parameters is discussed. The data on the kinetics of the formation of alloyed Au-Ag nanoparticles under laser irradiation of a mixture of colloid solutions of individual nanoparticles are presented. The effect of femtosecond laser beam self-action during metal ablation in liquids via the second harmonic generation at Ag nanoclusters is discussed. The data on the generation of core-shell nanoparticles during laser ablation of alloys and in the presence of the chemical interaction of formed nanoparticles with surrounding liquid are presented. It was shown that laser ablation of CdS and ZnSe crystals leads to the formation of quantum dots of these semiconductors in solution. The parameters controlling the properties of nanoparticles during ablation in liquids and possible applications of the method are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Neddersen, G. Chumanov, and T. M. Cotton, “Laser Ablation of Metals: A New Method for Preparing SERS Active Colloids,” Appl. Spectrosc. 47(12), 1959 (1993).

    Article  ADS  Google Scholar 

  2. M. S. Sibbald, G. Chumanov, and T. M. Cotton, “Reduction of Cytochrome c by Halide-Modified, Laser-Ablated Silver Colloids,” J. Phys. Chem. 100(11), 4672 (1996).

    Article  Google Scholar 

  3. M.-S. Yeh, Y.-S. Yang, Y.-P. Lee, H.-F. Lee, Y.-H. Yeh, and C.-S. Yeh, “Formation and Characteristics of Cu Colloids from CuO Powder by Laser Irradiation in 2-Propanol,” J. Phys. Chem. B. 103(33), 6851 (1999).

    Article  Google Scholar 

  4. P. V. Kamat, M. Flumiani, and G. V. Hartland, “Picosecond Dynamics of Silver Nanoclusters. Photoejection of Electrons and Fragmentation,” J. Phys. Chem. B. 102(17), 3123 (1998).

    Article  Google Scholar 

  5. A. Takami, H. Kurita, and S. Koda, “Laser-Induced Size Reduction of Noble Metal Particles.”, J. Phys. Chem. B. 103(8), 1226 (1999).

    Article  Google Scholar 

  6. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-Induced Shape Changes of Colloidal Gold Nanorods Using Femtosecond and Nanosecond Laser Pulses,” J. Phys. Chem. B. 104(26), 6152 (2000).

    Article  Google Scholar 

  7. J.-P. Abid, H. H. Girault, and P. F. Brevet, “Selective Structure Changes of Core-Shell Gold-Silver Nanoparticles by Laser Irradiation: Homogeneisation vs. Silver Removal,” Chem. Commun. Iss. 9, 829 (2001).

    Article  Google Scholar 

  8. N. Toshima and T. Yonezawa, New J. Chem. 22, 1179 (1998).

    Article  Google Scholar 

  9. N. Toshima, in: Reactions in Homogeneous Solutions (Surfactant Science Series, Vol. 92), Ed. by T. Sugimoto (M. Dekker, N.Y., 2000), p. 430.

    Google Scholar 

  10. J. A. Creighton and D. G. Eadon, “Ultraviolet-Visible Absorption Spectra of the Colloidal Metallic Elements,” J. Chem. Soc. Faraday Trans. 87, 3881 (1991).

    Article  Google Scholar 

  11. S. Link and M. El-Sayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods,” J. Phys. Chem. B. 103(40), 8410 (1999).

    Article  Google Scholar 

  12. M. Procházka, P. Mojzeš, J. Štěpánek, B. Vlčková, and P.-Y. Turpin, “Probing Applications of Laser-Ablated Ag Colloids in SERS Spectroscopy: Improvement of Ablation Procedure and SERS Spectral Testing,” Anal. Chem. 69(24), 5103 (1997).

    Article  Google Scholar 

  13. I. Srnová, M. Procházka, B. Vlčková, J. Štepánek, and P. Malý, “Surface-Enhanced Raman Scattering-Active Systems Prepared from Ag Colloids Laser-Ablated in Chemically Modified Aqueous Media,” Langmuir. 14(16), 4666 (1998).

    Article  Google Scholar 

  14. H. Fujiwara, S. Yanagida, and P. V. Kamat, “Visible Laser Induced Fusion and Fragmentation of Thionicotinamide-Capped Gold Nanoparticles,” J. Phys. Chem. B. 103(14), 2589 (1999).

    Article  Google Scholar 

  15. J. H. Hodak, A. Henglein, M. Giersig, and G. V. Hartland, “Laser-Induced Inter-Diffusion in AuAg Core-Shell Nanoparticles,” J. Phys. Chem. B. 104(49), 11708 (2000).

    Google Scholar 

  16. Y.-H. Yeh, M.-S. Yeh, Y.-P. Lee, and C.-S. Yeh, “Formation of Cu Nanoparticles from CuO Powder by Laser Ablation in 2-Propanol,” Chem. Lett. 27(11), 1183 (1998).

    Article  Google Scholar 

  17. Y.-H. Chen and C.-S. Yeh, “A New Approach for the Formation of Alloy Nanoparticles: Laser Synthesis of Gold-Silver Alloy from Gold-Silver Colloidal Mixtures,” Chem. Commun. Iss. 4, 371 (2001).

    Article  Google Scholar 

  18. F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Structure and Stability of Silver Nanoparticles in Aqueous Solution Produced by Laser Ablation,” J. Phys. Chem. B. 104(35), 8333 (2000).

    Article  Google Scholar 

  19. F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation and Size Control of Silver Nanoparticles by Laser Ablation in Aqueous Solution,” J. Phys. Chem. B. 104(39), 9111 (2000).

    Article  Google Scholar 

  20. F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation of Gold Nanoparticles by Laser Ablation in Aqueous Solution of Surfactant,” J. Phys. Chem. B. 105(22), 5114 (2001).

    Article  Google Scholar 

  21. T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, “Size-Dependent Melting Temperature of Individual Nanometer-Sized Metallic Clusters,” Phys. Rev. B. 42, 8548 (1990).

    Article  ADS  Google Scholar 

  22. M. Wautelet, J. P. Dauchot, and M. Hecq, “Size Effects on the Phase Diagrams of Nanoparticles of Various Shapes,” Mater. Sci. Eng. C. 23, 187 (2003).

    Article  Google Scholar 

  23. M. Wautelet, J. P. Dauchot, and M. Hecq, “Phase Diagrams of Small Particles of Binary Systems: a Theoretical Approach,” Nanotechnology. 11(1), 6 (2000).

    Article  ADS  Google Scholar 

  24. R. Vallée, M. Wautelet, J. P. Dauchot, and M. Hecq, “Size and Segregation Effects on the Phase Diagrams of Nanoparticles of Binary Systems,” Nanotechnology. 12(1), 68 (2001).

    Article  ADS  Google Scholar 

  25. M. Wautelet, “On the Shape Dependence of the Melting Temperature of Small Particles,” Phys. Lett. A. 246(3), 341 (1998).

    Article  ADS  Google Scholar 

  26. S. I. Dolgaev, A. V. Simakin, V. V. Voronov, G. A. Shafeev, and F. Bozon-Verduraz, “Nanoparticles Produced by Laser Ablation of Solids in Liquid Environment,” Appl. Surf. Sci. 186, 546 (2002).

    Article  ADS  Google Scholar 

  27. A. V. Simakin, V. V. Voronov, G. A. Shafeev, R. Brayner, and F. Bozon-Verduraz, “Nanodisks of Au and Ag Produced by Laser Ablation in Liquid Environment,” Chem. Phys. Lett. 348, 182 (2001).

    Article  ADS  Google Scholar 

  28. N. V. Suikovskaya, Chemical Methods for Producing Thin Transparent Films (Khimiya, Leningrad, 1971) [in Russian].

    Google Scholar 

  29. A. T. Izgaliev, A. V. Simakin, and G. A. Shafeev, “Formation of the Alloy of Au and Ag Nanoparticles upon Laser Irradiation of the Mixture of Their Colloidal Solutions,” Quantum Electron. 34(1), 47 (2004).

    Article  Google Scholar 

  30. G. A. Shafeev, E. Freysz, and F. Bozon-Verduraz, “Self-Influence of a Femtosecond Laser Beam upon Ablation of Ag in Liquids,” Appl. Phys. A. 78(3), 307 (2004).

    Article  ADS  Google Scholar 

  31. K. Y. Lo and J. T. Lue, “Quantum Size Effect on Optical Second-Harmonic Generation in Small Metallic Particles,” Phys. Rev. B. 51(4), 2467 (1995).

    Article  ADS  Google Scholar 

  32. O. A. Aktsipetrov, P. V. Elyutin, A. A. Fedyanin, A. A. Nikulin, and A. N. Rubtsov, “Second-Harmonic Generation in Metal and Semiconductor Low-Dimensional Structures,” Surf. Sci. 325(3), 343 (1995).

    Article  ADS  Google Scholar 

  33. G. Farkas, C. Tóth, K. C. Neuman, and F. K. Tittel, “Wavelength Dependence of Harmonic Generation Efficiency at Metal Surfaces Induced by Femtosecond Ti:Sapphire Laser Pulses,” Opt. Commun. 132(3, 4), 289 (1996).

    Article  ADS  Google Scholar 

  34. J.-H. Klein-Wiele, P. Simon, and H.-G. Rubahn, “Picosecond Response of Sodium Clusters on Dielectric Substrates,” Opt. Commun. 161(1–3), 42 (1999).

    Article  ADS  Google Scholar 

  35. K. V. Anikin, N. N. Melnik, A. V. Simakin, G. A. Shafeev, and A. G. Vitukhnovsky, “Formation of ZnSe and CdS Quantum Dots via Laser Ablation in Liquids,” Chem. Phys. Lett. 366, 357 (2002).

    Article  ADS  Google Scholar 

  36. N. N. Melnik, Yu. G. Sadofyev, T. N. Zavaritskaya, and L. K. Vodop’yanov, “Multiphonon Relaxation in ZnSe Thin Films and ZnSe/ZnCdSe MQW Structures,” Nanotechnology. 11(4), 252 (2000).

    Article  ADS  Google Scholar 

  37. J. B. Wang, G. W. Yang, C. Y. Zhang, H. L. Zhong, and Zh. A. Ren, “Cubic-BN Nanocrystals Synthesis by Pulsed Laser Induced Liquid-Solid Interfacial Reaction,” Chem. Phys. Lett. 367, 10 (2003).

    Article  ADS  Google Scholar 

  38. F. Bozon-Verduraz, R. Brayner, V. V. Voronov, N. A. Kirichenko, A. V. Simakin, and G. A. Shafeev, “Production of Nanoparticles by Laser-Induced Ablation of Metals in Liquids” Quantum Electron. 33(8), 714 (2003).

    Article  Google Scholar 

  39. L. D. Landau and E. M. Lifshitz, Hydrodynamics (Pergamon, Oxford, 1986).

    Google Scholar 

  40. A. B. Brailovskii, I. A. Dorofeev, A. B. Ezerskii, V. A. Ermakov, V. I. Luchin, and V. E. Semenov, “Formation of Large-Scale Relief on a Target Surface by Repeated Application of Laser Pulses,” Sov. Phys. Tech. Phys. 36(3), 324 (1991).

    Google Scholar 

  41. V. P. Ageev, A. A. Gorbunov, and V. I. Konov, “Reflection of XeCl Laser Radiation from an Aluminum Target in the Presence of an Erosion Plasma,” Sov. J. Quantum Electron. 19(6), 785 (1989).

    Article  Google Scholar 

  42. I. Ursu, I. N. Mihailescu, A. L. Popa, A. M. Prokhorov, V. P. Ageev, A. A. Gorbunov, and V. I. Konov, “Studies of the Change of a Metallic Surface Microrelief as a Result of Multiple-Pulse Action of Powerful UV Laser Pulses,” J. Appl. Phys. 58(10), 3909 (1985).

    Article  ADS  Google Scholar 

  43. V. N. Golubev, I. A. Dorofeev, M. N. Libenson, and V. I. Luchin, Sov. Tech. Phys. Lett. 17(24), 884 (1991).

    Google Scholar 

  44. A. B. Brailovsky, S. V. Gaponov, and V. I. Luchin, “Mechanisms of Melt Droplets and Solid-Particle Ejection from a Target Surface by Pulsed Laser Action,” Appl. Phys. A. 61(1), 81 (1995).

    Article  ADS  Google Scholar 

  45. F. Sánchez, J. L. Morenza, R. Aguiar, J. C. Delgado, and M. Varela, “Whiskerlike Structure Growth on Silicon Exposed to ArF Excimer Laser Irradiation,” Appl. Phys. Lett. 69(5), 620 (1996).

    Article  ADS  Google Scholar 

  46. T.-H. Her, R. F. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of Silicon with Femtosecond Laser Pulses,” Appl. Phys. Lett. 73(12), 1673 (1998).

    Article  ADS  Google Scholar 

  47. A. J. Pedraza, J. D. Fowlkes, and D. H. Lowndes, “Silicon Microcolumn Arrays Grown by Nanosecond Pulsed-Excimer Laser Irradiation,” Appl. Phys. Lett. 74(16), 2322 (1999).

    Article  ADS  Google Scholar 

  48. V. V. Voronov, S. I. Dolgaev, S. V. Lavrishchev, A. A. Lyalin, A. V. Simakin, and G. A. Shafeev, “Formation of Conic Microstructures upon Pulsed Laser Evaporation of Solids,” Quantum Electron. 30(8), 710 (2000).

    Article  Google Scholar 

  49. V. V. Voronov, S. I. Dolgaev, S. V. Lavrishchev, A. A. Lyalin, A. V. Simakin, and G. A. Shafeev, “Transition from Capillary Waves to Conic Microstructures at Pulsed Laser Evaporation of Solids,” Phys. Vibr. 7(3), 131 (2000).

    Google Scholar 

  50. V. V. Voronov, S. I. Dolgaev, S. V. Lavrishchev, A. A. Lyalin, A. V. Simakin, and G. A. Shafeev, “Formation of Conical Microstructures upon Laser Evaporation of Solids,” Appl. Phys. A. 73(2), 177 (2001)

    Article  ADS  Google Scholar 

  51. A. V. Simakin, V. V. Voronov, and G. A. Shafeev, in: Proceedings of SPIE, Vol. 5121: Laser Processing of Advanced Materials and Laser Microtechnologies, Ed. by F. Dausinger, V. Konov, V. Baranov, and V. Panchenko (SPIE, Bellingham, WA, 2003), p. 103.

    Google Scholar 

  52. V. I. Emelianov, “Self-Organization of Ordered Defect—Deformation Microstructures and Nanostructures on the Surfaces of Solids under the Action of Laser Radiation,” Quantum Electron. 29(7), 561 (1999).

    Article  Google Scholar 

  53. V. I. Emel’yanov and I. M. Karimov, “A Defect-Deformation Model of the Surface Roughness Formation in Semiconductors and Metals under Laser Irradiation,” Tech. Phys. Lett. 31(3), 258 (2005).

    Article  Google Scholar 

  54. F. V. Bunkin and M. I. Tribel’skii, “Nonresonance Interaction of Powerful Optical Radiation with a Liquid,” Sov. Phys.-Usp. 23, 105 (1980).

    Article  ADS  Google Scholar 

  55. P. V. Kazakevich, V. V. Voronov, A. V. Simakin, and G. A. Shafeev, “Production of Copper and Brass Nanoparticles upon Laser Ablation in Liquids,” Quantum Electron. 34(10), 951 (2004).

    Article  Google Scholar 

  56. V. V. Voronov, P. V. Kazakevich, A. V. Simakin, and G. A. Shafeev, “Internal Segregation of Nanoparticles Irradiated by Laser Radiation,” JETP Lett. 80(11), 684 (2004).

    Article  ADS  Google Scholar 

  57. E. V. Zavedeev, A. V. Petrovskaya, A. V. Simakin, and G. A. Shafeev, “Formation of Nanostructures upon Laser Ablation of Silver in Liquids,” Quantum Electron. 36(10), 978–980 (2006).

    Article  Google Scholar 

  58. S. Lau Truong, G. Levi, F. Bozon-Verduraz, A. V. Petrovskaya, A. V. Simakin, and G. A. Shafeev, “Generation of Ag Nanospikes Via Laser Ablation in Liquid Environment and Their Activity in SERS of Organic Molecules,” Appl. Phys. A. 89(2), 373 (2007).

    Article  ADS  Google Scholar 

  59. G. A. Shafeev, F. Bozon-Verduraz, and M. Robert, “Experimental Evidence of Transmutation of Hg into Au under Laser Exposure of Hg Nanodrops in D2O,” Phys. Wave Phenom. 15(3), 131 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Shafeev.

About this article

Cite this article

Simakin, A.V., Voronov, V.V. & Shafeev, G.A. Nanoparticle formation during laser ablation of solids in liquids. Phys. Wave Phen. 15, 218–240 (2007). https://doi.org/10.3103/S1541308X07040024

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X07040024

PACS numbers

Navigation