Skip to main content
Log in

Method for measuring the frequency shifts of interference maxima in monitoring of dispersion media: Theory, implementation, and prospects

  • Wave Tomography
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

A theory and implementation of the approach to reconstruction of inhomogeneities in dispersion media, based on measuring the frequency shifts of interference maxima (FSIMs) of wave field, are reported. The possibilities of the new approach are compared with the potential of the conventional technique, which is based on measuring the propagation times of pulsed signals. Specific methods for measuring FSIMs in time-dependent media are described, and the noise immunity of these methods is evaluated. The reconstruction (via FSIM monitoring) of typical oceanic inhomogeneities is described and analyzed. Possible applications of this approach in the infra- and ultrasonic ranges are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Physics of Medical Imaging. Ed. by S. Webb (IOP Publishing LTD, 1988).

  2. B. K. P. Horn, “Fan-Beam Reconstruction Methods,” Proc. IEEE. 67(12), 1616 (1979).

    Article  Google Scholar 

  3. T. J. Eisler, R. New, and D. Calderone, “Resolution and Variance in Acoustic Tomography,” J. Acoust. Soc. Am. 72(6), 1965 (1982).

    Article  ADS  Google Scholar 

  4. V. V. Goncharov, V. Yu. Zaitsev, V. M. Kurtepov, A. G. Nechaev, and A. I. Khilko, Acoustic Ocean Tomography (IAP RAS, Nizhniy Novgorod, 1997) [in Russian].

    Google Scholar 

  5. S. Helgason, The Radon Transform (Birkhäuser, Boston, 1980).

    MATH  Google Scholar 

  6. R. M. Lewitt, “Reconstruction Algorithms: Transform Methods,” Proc. IEEE. 71(3), 390 (1983).

    Article  Google Scholar 

  7. U. Buck, “Inversion of Molecular Scattering Data,” Rev. Mod. Phys. 46(2), 369 (1974).

    Article  MathSciNet  ADS  Google Scholar 

  8. R. G. Newton, “Inverse Problems in Physics,” SIAM Rev. 12(3), 346 (1970).

    Article  MathSciNet  Google Scholar 

  9. F. Natterer, The Mathematics of Computerized Tomography (B.G. Teubner-J. Wiley, Stuttgart et al., 1986).

    MATH  Google Scholar 

  10. A. J. Devaney, “Inversion Formula for Inverse Scattering Within the Born Approximation,” Opt. Lett. 7(3), 111 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  11. A. J. Devaney, “Variable Density Acoustic Tomography,” J. Acoust. Soc. Am. 78(1), 120 (1985).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. W. Munk, P. Worcester, and C. Wunsch, Ocean Acoustic Tomography (Cambridge Univ. Press, Cambridge, 1995).

    Book  Google Scholar 

  13. W. Munk and C. Wunsch, “Ocean Acoustic Tomography: Rays and Modes,” Rev. Geophys. Space Phys. 21(4), 777 (1983).

    Article  ADS  Google Scholar 

  14. M. N. Rychagov and H. Ermert, “Reconstruction of Fluid Motion in Acoustic Diffraction Tomography,” J. Acoust. Soc. Am. 99(5), 3029 (1996).

    Article  ADS  Google Scholar 

  15. S. J. Norton, “Fluid Flow Imaging by Means of Wide-Band Diffraction Tomography,” J. Acoust. Soc. Am. 105(5), 2717 (1999).

    Article  ADS  Google Scholar 

  16. V. A. Burov, A. Yu. Popov, S. N. Sergeev, and A. S. Shurup, “Ocean Acoustic Tomography with a Nonstandard Representation of Refractive Inhomogeneities,” Acoust. Phys. 51(5), 513 (2005).

    Article  ADS  Google Scholar 

  17. V. A. Burov, S. N. Sergeev, and A. S. Shurup, “The Significance of the Choice of Basis Functions in the Problems of Acoustic Tomography of the Ocean,” Acoust. Phys. 53(5), 698 (2007).

    Article  ADS  Google Scholar 

  18. A. L. Virovlyansky, A. Yu. Kazarova, and L. Ya. Lyubavin, “Reconstruction of the Average Ocean Temperature From the Measured Travel Times of Sound Pulses,” Acoust. Phys. 53(2), 181 (2007).

    Article  ADS  Google Scholar 

  19. V. A. Burov, S. N. Sergeev, and A. A. Shmelev, “The Possibility of Reconstructing the Seasonal Variability of the Ocean Using Acoustic Tomography Methods,” Acoust. Phys. 53(3), 257 (2007).

    Article  ADS  Google Scholar 

  20. V. A. Burov, T. V. Gracheva, S. N. Sergeev, and A. S. Shurup, “A Two-Dimensional Tomography Model for the Oceanic Inhomogeneity Reconstruction with Wave and Ray Representations of Acoustic Field,” Acoust. Phys. 54(2), 246 (2008).

    Article  ADS  Google Scholar 

  21. B. G. Katsnelson, S. A. Pereselkov, and V. G. Petnikov, “On the Feasibility of Normal Wave Selection in a Shallow-Water Waveguide,” Acoust. Phys. 50(5), 552 (2004).

    Article  ADS  Google Scholar 

  22. H. A. De Ferrari and H. B. Hguyen, “Acoustic Reciprocal Transmission Experiments. Florida Strait,” J. Acoust Soc. Am. 79(2), 299 (1985).

    Article  Google Scholar 

  23. D. S. Ko, H.A. De Ferrari, and P. Malanette-Rizzoli, “Acoustic Tomography in the Florida Strait: Temperatur, Current and Vorticity Measurements,” J. Geophys. Res. 94(5), 6197 (1989).

    Article  ADS  Google Scholar 

  24. K. D. Sabinin and A. N. Serebryanyi, “Hot Spots“ in the Fields of Internal Waves in the Ocean,” Acoust. Phys. 53(3), 357 (2007).

    Article  ADS  Google Scholar 

  25. V. M. Kuz’kin, “The Effect of Variability of Ocean Stratification on a Sound Field Interference Structure,” Acoust. Phys. 41(2), 300 (1995).

    ADS  Google Scholar 

  26. V. M. Kuz’kin, “Frequency Shifts of the Sound Field Interference Pattern in a Shallow Sea,” Acoust. Phys. 45(2), 224 (1999).

    ADS  Google Scholar 

  27. V. M. Kuz’kin, S. A. Pereselkov, and E. A. Petnikova, “The Possibility of Reconstruction of Two-Dimensional Random Inhomogeneities in a Shallow Sea by Frequency Shifts of the Spatial Interference Structure of the Sound Field,” Phys. Wave Phenom. 16(1), 42 (2008).

    Google Scholar 

  28. V. M. Kuz’kin, “Possibility of Reconstructing Hydrological Variability of Shallow Sea by Measuring Frequency Shifts of Interference Structure of Sound Field,” Phys. Wave Phenom. 16(4), 305 (2008).

    Article  Google Scholar 

  29. V. M. Kuz’kin and S. A. Pereselkov, “Reconstruction of Spectrum of Background Internal Waves,” Phys. Wave Phenom. 14(4), 52 (2006).

    Google Scholar 

  30. V. M. Kuz’kin and S. A. Pereselkov, “Reconstruction of Spatial Spectra of the Isotropic Field of Background Internal Waves,” Acoust. Phys. 55(1), 92 (2009).

    Article  ADS  Google Scholar 

  31. V. M. Kuz’kin and S. A. Pereselkov, “Reconstruction of the Spatial Spectrum for an Anisotropic Field of Background Internal Waves,” Acoust. Phys. 55(1), 197 (2009).

    Article  ADS  Google Scholar 

  32. V. M. Kuz’kin and S. A. Pereselkov, “Reconstruction of Internal Waves in Oceanic Waveguides,” Acoust. Phys. 55(3), 406 (2009).

    Article  ADS  Google Scholar 

  33. V. M. Kuz’kin and S. A. Pereselkov, “Acoustic Monitoring of Frontal Zone,” Phys. Wave Phenom. 18(1), 64 (2010).

    Article  Google Scholar 

  34. V. M. Kuz’kin, A. V. Ogurtsov, and V. G. Petnikov, “The Effect of Hydrodynamic Variability on Frequency Shifts of the Interference Pattern of a Sound Field in a Shallow Sea,” Acoust. Phys. 44(1), 77 (1998).

    ADS  Google Scholar 

  35. A. Turgut, M. Orr, and B. Pasewark, “Acoustic Monitoring of the Tide Height and Slope-Water Intrusion at the New Jersey Shelf in Winter Conditions,” J. Acoust. Soc. Am. 121(5), 2534 (2007).

    Article  ADS  Google Scholar 

  36. A. Turgut and M. Orr, “Broadband Source Localization Using Horizontal-Beam Acoustic Intensity Striations,” J. Acoust. Soc. Am. 127(1), 73 (2010).

    Article  ADS  Google Scholar 

  37. V. M. Kuz’kin, J. F. Lunch, A. A. Lunkov, and V. G. Petnikov, “Acoustic Monitoring of the Tidal Oscillation Using the Information About Interference Structure Frequency Shifts in Shallow Water,” in Proceedings of the 22nd Session of RAS (GEOS, Moscow, 2010), p. 282 [in Russian].

    Google Scholar 

  38. B. G. Katsnelson and V.G. Petnikov, Shallow Water Acoustics (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  39. L. M. Brekhovskikh and Yu.P. Lysanov, Fundamentals of Ocean Acoustics (Springer Verlag, Berlin, N.Y., 1982).

    Google Scholar 

  40. V. N. Kulakov, N. E. Mal’tsev, and S. D. Chuprov, “Excitation of Group of Modes in a Layered Ocean,” Sov. Phys.-Acoust. 29(1), 41 (1983).

    Google Scholar 

  41. V. A. Burov and S.N. Sergeev, “Modern Methods of Perturbation Theory in Calculation of Hydroacoustic Fields,” Vestn. Mosk. Gos. Univ. Ser. 3. Fiz. Astron. 33(2), 49 (1992).

    MATH  MathSciNet  Google Scholar 

  42. V. M. Kuz’kin, O. Yu. Lavrova, S. A. Pereselkov, V. G. Petnikov, and K. D. Sabinin, “Anisotropic Field of Background Internal Waves on a Sea Shelf and Its Effect on Low-Frequency Sound Propagation,” Acoust. Phys. 52(1), 65 (2006).

    Article  ADS  Google Scholar 

  43. S. D. Chuprov, “Interference Structure of Sound in a Layered Ocean,” in Ocean Acoustics. Current State. Ed. by L. M. Brekhovskikh and I. B. Andreeva (Nauka, Moscow, 1982), pp. 71–91 [in Russian].

    Google Scholar 

  44. A. Tolstoy, O. Diachok, and L. Frazer, “Acoustic Tomography via Matched Field Processing,” J. Acoust. Soc. Am. 89(3), 1119 (1991).

    Article  ADS  Google Scholar 

  45. V. M. Kuz’kin, “Propagation and Resolution of Pulse Signals in Oceanic Waveguides,” Phys. Wave Phenom. 17(1), 56 (2009).

    Article  Google Scholar 

  46. V. M. Kuz’kin, V. D. Oppengeim, and S. A. Pereselkov, “The Sensitivity of Monitoring by Measuring the Frequency Shifts of the Sound Field Interference Pattern,” Acoust. Phys. 54(2), 224 (2008).

    Article  ADS  Google Scholar 

  47. Yu. V. Petukhov, “Frequency-Time Structure of Pulse Pressure Signals in Oceanic Waveguides,” Acoust. Phys. 41(3), 417 (1995).

    MathSciNet  ADS  Google Scholar 

  48. V. M. Kuz’kin, “Error of Local Sound Field’s Maximum Frequency Shifts in Shallow Water,” Acoust. Phys. 55(6), 771 (2009).

    Article  ADS  Google Scholar 

  49. V. I. Tikhonov, Optimal Signal Reception (Radio i Svyaz, Moscow, 1983) [in Russian].

    Google Scholar 

  50. M. M. Dargeiko, Yu. A. Kravtsov, V.G. Petnikov, A.S. Petrosyan, Yu. I. Samoilenko, and M.M. Slavinskij, “Peculiarities of the Radiation Field Focusing in Multimode Wave Channels,” Izv. Vyssh. Uchebn. Zaved. Radiofiz. 27(6), 746 (1984).

    Google Scholar 

  51. V. A. Grigor’ev and V. M. Kuz’kin, “Field Focusing Control in Multimode Plane-Layered Waveguides,” Acoust. Phys. 55(3), 292 (2009).

    Google Scholar 

  52. W. A. Kuperman, W.S. Hodgkiss, H. C. Song, T. Akal, C. Ferla, and D. R. Jackson, “Phase Conjugation in the Ocean: Experimental Demonstration of an Acoustic Time-Reversal Mirror,” J. Acoust. Soc. Am. 103(1), 25 (1998).

    Article  ADS  Google Scholar 

  53. H. C. Song, W.A. Kuperman, and W.S. Hodgkiss, “A Time-Reversal Mirror with Variable Range Focusing,” J. Acoust. Soc. Am. 103(6), 3234 (1998).

    Article  ADS  Google Scholar 

  54. W. S. Hodgkiss, H. C. Song, W.A. Kuperman, T. Akal, C. Ferla, and D. R. Jackson, “A Long-Range and Variable Focus Phase Conjugation Experiment in Shallow Water,” J. Acoust. Soc. Am. 105(3), 1597 (1999).

    Article  ADS  Google Scholar 

  55. V. M. Kuz’kin and S. A. Pereselkov, “Methods of Measuring Frequency Shifts in the Interference Structure of the Sound Field in Oceanic Waveguides,” Acoust. Phys. 56(4), 514 (2010).

    Article  ADS  Google Scholar 

  56. V. M. Kuz’kin, A. A. Lunkov, and S. A. Pereselkov, “Correlation Method of Measurement of Frequency Shifts of Sound Field Maximums, Caused by Perturbations of Oceanic Environment,” Acoust. Phys. 56(5) (2010).

  57. R. F. Gasparovic and V.S. Etkin, “An Overview of the Joint US/Russia Internal Wave Remote Sensing Experiment,” in International Geoscience and Remote Sensing Symposium: Surface and Atmospheric Remote Sensing: Technologies, Data Analysis, and Interpretation (IGARSS’94) (California Inst. Technol. Pasadena, California, August 8–12, 1994). Digest, pp. 741–743.

    Google Scholar 

  58. V. I. Vlasenko, N.N. Golenko, V. T. Paka, K. D. Sabinin, and R. Chapman, “Dynamics of Baroclinic Tides in the US Shelf,” Izv. Atmosp. Oceanic Phys. 33(5), 651 (1997).

    Google Scholar 

  59. M. Badiey, Y. Mu, J. F. Lynch, J. Apel, and S. Wolf, “Temporal and Azimuthal Dependence of Sound Propagation in Shallow Water with Internal Waves,” IEEE J. Ocean. Eng. 27(1), 117 (2002).

    Article  Google Scholar 

  60. M. Badiey, B.G. Katsnelson, J. F. Lynch, S. A. Pereselkov, and, W. L. Siegmann, “Measurement and Modeling of Three-Dimensional Sound Intensity Variations due to Shallow Water Internal Waves,” J. Acoust. Soc. Am. 117(2), 613 (2005).

    Article  ADS  Google Scholar 

  61. B. G. Katsnelson and S.A. Pereselkov, “Low-Frequency Horizontal Acoustic Refraction Caused by Internal Wave Solitons in a Shallow Sea,” Acoust. Phys. 46(6), 684 (2000).

    Article  ADS  Google Scholar 

  62. V.P. Bystrov, V.V. Volodin, S.P. Taradin, and I. N. Shcherbachenko, “Practice of Automated Cartography of Hydrological Fronts by the Example of the Barents Sea,” in Preprint No. 142, IKI AN SSSR (Inst. Space Res. Acad. Nauk USSR, Moscow, 1988) [in Russuan].

    Google Scholar 

  63. O. M. Johannessen and L. A. Foster, “A Note on the Tomographically Controlled Oceanic Polar Front in the Barents Sea,” J. Geogr. Res. 83(9), 4567 (1978).

    ADS  Google Scholar 

  64. D. Tang, J.N. Moum, J. F. Lynch, P. Abbot, R. Chapman, P. H. Dahl, T. F. Duda, G. Gawarkiewicz, S. Glenn, J. A. Goff, H. Graber, J. Kemp, A. Maffei, J. D. Nash, and A. Newhall, “Shallow Water’06: a Joint Acoustic Propagation/Nonlinear Internal Wave Physics Experiment,” Oceanography. 20(4), 156 (2007).

    Google Scholar 

  65. A. E. Newhall et al. “Acoustic and Oceanographic Observations and Configuration Information for the WHOI Moorings from the SW06 Experiment,” Woods Hole Oceanog. Inst. Tech. Rept. WHOI-2007-04.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Kuz’kin.

About this article

Cite this article

Kuz’kin, V.M., Lyakhov, G.A. & Pereselkov, S.A. Method for measuring the frequency shifts of interference maxima in monitoring of dispersion media: Theory, implementation, and prospects. Phys. Wave Phen. 18, 196–222 (2010). https://doi.org/10.3103/S1541308X10030076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X10030076

Keywords

Navigation