Skip to main content
Log in

Mechanisms of nanowhisker formation: Monte Carlo simulation

  • Materials and Technologies for Nano- and Optoelectronics
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

Nanowhisker formation on substrates activated by catalyst drops is studied by Monte Carlo simulation. Dependences of the whisker growth rate on diameter are investigated for various growth modes. The influence of deposition conditions on whisker morphology is examined. It is shown that straight thin whiskers of uniform thickness can be obtained only using a catalyst having a large contact angle with the whisker material. In such a physicochemical system, variation of growth conditions can result in nanotube formation. An atomic mechanism for the formation of a hollow whisker is proposed. Ranges of model growth conditions suitable for the growth of nanowhiskers and nanotubes are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. C. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species,” Science 293, 1289 (2001).

    Article  ADS  Google Scholar 

  2. N. J. Quitoriano, M. Belov, S. Evoy, and T. I. Kamins, “Single-Crystal, Si Nanotubes, and Their Mechanical Resonant Properties,” Nano Lett. 9(4), 1511 (2009).

    Article  ADS  Google Scholar 

  3. E. Givargizov, “Controlled Growth of Whisker Crystals and Design of Single Crystal Whisker Probes,” Kristallografiya 51(5), 947 (2006).

    Google Scholar 

  4. O. Hayden, R. Agarwal, and W. Lu, “Semiconductor Nanowire Devices,” Nano Today 3(5/6), 12 (2008).

    Article  Google Scholar 

  5. L. J. Lauhon, M. S. Gudiksen, D. Wang, and Ch. M. Lieber, “Epitaxial Core-Shell and Core-Multishell Nanowire Heterostructures,” Nature 420, 57 (2002).

    Article  ADS  Google Scholar 

  6. N. D. Zakharov, P. Werner, G. Gerth, et al., “Growth Phenomena of Si and Si/Ge Nanowires on Si(111) by Molecular Beam Epitaxy,” J. Cryst. Growth. 290(6) (2006).

  7. E. Givargizov, Vapor Growth of Whisker and Plate Crystals (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  8. V. G. Dubrovskii and N. V. Sibirev, “General Form of the Dependences of Nanowire Growth Rate on the Nanowire Radius,” J. Cryst. Growth 304, 504 (2007).

    Article  ADS  Google Scholar 

  9. J. Westwater, D. P. Gosain, S. Tomiya, et al., “Growth of Silicon Nanowires via Gold/Silane Vapor-Liquid-Solid Reaction,” J. Vac. Sci. Technol. B 15(3), 554 (1997).

    Article  Google Scholar 

  10. I. Regolin, D. Sudfeld, S. Luttjohann, et al., “Growth and Characterization of GaAs/InGaAs/GaAs Nanowhiskers on (111) GaAs,” J. Cryst. Growth 298, 607 (2007).

    Article  ADS  Google Scholar 

  11. E. P. A. M. Bakkers and M. A. Verheijen, “Synthesis of InP Nanotubes,” J. Amer. Chem. Soc. 125(12), 3440 (2003).

    Article  Google Scholar 

  12. M. Nolan, S. O’Callaghan, G. Fagas, et al., “Silicon Nanowire Band Gap Modification,” Nano Lett. 7(1), 34 (2007).

    Article  ADS  Google Scholar 

  13. T. Vo, A. J. Williamson, and G. Galli, “First Principles Simulations of the Structural and Electronic Properties of Silicon Nanowires,” Phys. Rev. B 74, 045116 (2006).

    Google Scholar 

  14. I. G. Neizvestny, N. L. Shwartz, Z. Sh. Yanovitskaya, and A. V. Zverev, “3D-model of epitaxial growth on porous {111} and {100} Si surfaces,” Comput. Phys. Commun. 147, 272 (2002).

    Article  MATH  ADS  Google Scholar 

  15. A. V. Zverev, K. Yu. Zinchenko, N. L. Shwartz., and Z. Sh. Yanovitskaya, “Monte Carlo Simulation of Nanostructure Growth with an Algorithm of Planning Events on the Time Scale,” Ross. Nanotekhnologii 4(3/4), 85 (2009).

    Google Scholar 

  16. J. Kikkawa, Y. Ohno, and S. Takeda, “Growth Rate of Silicon Nanowires,” Appl. Phys. Lett. 86, 123109 (2005).

    Article  ADS  Google Scholar 

  17. S. Kodambaka, J. Tersoff, M. C. Reuter, and F. M. Ross, “Diameter-Independent Kinetics in the Vapor-Liquid-Solid Growth of Si Nanowires,” Phys. Rev. Lett. 96, 096105 (2006).

    Google Scholar 

  18. N. Zakharov, P. Werner, L. Sokolov, and U. Gosele, “Growth of Si Whiskers by MBE: Mechanism and Peculiarities,” Physica E 37(1/2), 148 (2007).

    Article  ADS  Google Scholar 

  19. V. G. Dubrovskii, N. V. Sibirev, R. A. Suris, et al., “On the Role of Surface Diffusion of Adatoms in the Formation of Nanometer Size Whisker Crystals,” Fiz. Tekh. Poluprovodn. 40(9), 1103 (2006).

    Google Scholar 

  20. A. G. Nastovjak, I. G. Neizvestny, N. L. Shwartz, et al., “Effect of Substrate-Drop Parameters on Nanowhiskers Morphology,” in Proc. 9th Int. Workshops and Tutorials on Electron Devices and Materials (EDM-2008), Erlagol, Altai, July 1–5, 2008, p. 41.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Nastovjak.

Additional information

Original Russian Text © A. G. Nastovjak, I. G. Neizvestny, N. L. Swartz, E. S. Sheremet, 2009, published in Avtometriya, 2009, Vol. 45, No. 4, pp. 72–79.

About this article

Cite this article

Nastovjak, A.G., Neizvestny, I.G., Shwartz, N.L. et al. Mechanisms of nanowhisker formation: Monte Carlo simulation. Optoelectron.Instrument.Proc. 45, 342–347 (2009). https://doi.org/10.3103/S8756699009040104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699009040104

Key words

Navigation