Skip to main content
Log in

Mathematical model of parallel retrial queueing of multiple requests

  • Analysis and Synthesis of Signals and Images
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

A model of parallel queueing of requests is developed for a queueing system consisting of two units with an unlimited number of servers in each unit and with retrial queueing in the units. An analytic expression is obtained for the generating function of the multi-dimensional state probability distribution of the random vector which characterizes the number of requests in each unit and the number of repeated calls to each unit in a nonstationary mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Toporkov, Models of Distributed Computations (Fizmatlit, Moscow, 2004) [in Russian].

    MATH  Google Scholar 

  2. G. R. Andrews, Foundations of Multithreaded, Paralell and Distributed Programming (Addison-Wesley, 2003).

  3. V. G. Khoroshevskii and V. A. Pavsky, “Calculating the Efficiency Indices of Distributed Computer Systems Functioning,” Avtometria 44(2), 3–15 (2008) [Optoelectr., Instrum. Data Process. 44 (2), 95–104 (2008)].

    Google Scholar 

  4. T. Grzes, V. V. Salauyou, and I. R. Bulatova, “Power Estimation Methods in Digital Circuits Design,” Avtometriya 45(6), 105–114 (2009) [Optoelectr., Instrum. Data Process. 45 (6), 576–583 (2009)].

    Google Scholar 

  5. Ya. E. Romm and V. V. Zabeglov, “Parallel Schemes of Certain Discrete Orthogonal Transformations,” Avtometriya 46(6), 54–70 (2010) [Optoelectr., Instrum. Data Process. 46 (6), 551–564 (2010)].

    Google Scholar 

  6. A. G. Tatashev, “A Queueing System with Batch Arrival and Inverse Discipline,” Kibernetika Sistemnyi Analiz, No. 6, 163–165 (1995).

  7. A. Pechinkin and T. Svischeva, “The Stationary State Probability in the BMAP/G/1/r Queueing System with Inverse Discipline and Probabilistic Priority,” in Trans. of XXIV Int. Seminar on Stability Problems for Stochastic Models, Jurmala, Latvia, September 10–17, 2004, pp. 141–147.

  8. I. I. Ezhov and V. F. Kadankov, “Gx/G/1 Queueing System,” Matematicheskaya Studiya 16(2), 199–212 (2001).

    MathSciNet  MATH  Google Scholar 

  9. I. I. Ezhov and V. F. Kadankov, “The Main Probabilistic Characteristics of the Gk/G/1 Queueing System,” Ukr. Mat. Zh. 53(10), 1343–1357 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  10. V. V. Chaplygin, “Stationary Characteristics of the G[X]/MSP/1/1Queueing System with the Arrival of Batches of Limited Volume,” Informatsionnye Protsessy 6(2), 144–152 (2006).

    Google Scholar 

  11. C. D. Apiche and D. R. Manzo, “A Finite Capacity BMAPK/GK/1 Queue with the Generalized Foreground-Background Processor Sharing Discipline,” Avtomat. Telemekh., No. 3, 94–102 (2006).

  12. A. A. Chechel’nitskii and O. V. Kucherenko, “Stationary Characteristics of Parallel Queueing Systems with a Two-Dimensional Input,” in Collected Scientific Papers (Minsk, 2009), Vol. 2, pp. 262–268 [in Russian].

    Google Scholar 

  13. S. P. Moiseeva, A. S. Morozova, and A. A. Nazarov, “Probability Distribution of a Two-Dimensional Flow of Requests in an Infinite-Linear Retrial Queueing System,” Vestn. Tomsk. Gos. Univ., No. 16, 125–128 (2006).

  14. A. S. Morozova, S. P. Moiseeva, and A. A. Nazarov, “Investigation of a Retrial Queueing System with an Unlimited Number of Servers by Limiting Decomposition,” Vychisl. Tekhnol. 13(5), 88–92 (2005).

    Google Scholar 

  15. I. A. Ananina, A. A. Nazarov, and O. N. Galazhinskaya, “Study of Flows in a Queueing System with an Unlimited Number of Phases and Lines by Limiting Decomposition,” in Queueing: Flows, Systems, and Networks, Proc. Int. Sci. Conf. Current Mathematical Methods for Analyzing and Optimizing Information-Telecommunication Networks, Minsk, 2009, pp. 170–174.

  16. S. P. Moiseeva, I. A. Ananina, and A. A. Nazarov, “Investigation of Flows in the M|GI|1 Retrial System by Limiting Decomposition,” Vestn. Tomsk. Gos. Univ., Ser. Upravlenie, Vychils. Tekh. Informatika, No. 3 (8), 56–67 (2009).

  17. A. A. Nazarov and I. A. Semenova, “Asymptotic Analysis of Retrial Queueing Systems,” Avtometria 47(4), 104–113 (2011) [Optoelectr., Instrum. Data Process. 47 (4), 406–413 (2011)].

    Google Scholar 

  18. B. V. Gnedenko and I. N. Kovalenko, Introduction to Queueing Theory (KomKniga, Moscow, 2005) [in Russian].

    Google Scholar 

  19. A. T. Bharucha-Reid, Elements of the Theory of Markov Processes (McGraw-Hill, New York 1969).

    MATH  Google Scholar 

  20. L. E. Elsgolts, Differential Equations and Calculus of Variations (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  21. I. A. Zakhorol’naya and S. P. Moiseeva, “Mathematical Model of Changes in Income from the Sale of Complementary Goods,” in Proc. Tenth Int. Conf. on Financial and Actuarial Mathematics and Event-Convergence Technologies, Krasnoyarsk, 2011, pp. 157–160.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Zakhorol’naya.

Additional information

Original Russian Text © S.P. Moiseeva, I.A. Zakhorol’naya, 2011, published in Avtometriya, 2011, Vol. 47, No. 6, pp. 51–58.

About this article

Cite this article

Moiseeva, S.P., Zakhorol’naya, I.A. Mathematical model of parallel retrial queueing of multiple requests. Optoelectron.Instrument.Proc. 47, 567–572 (2011). https://doi.org/10.3103/S8756699011060276

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699011060276

Keywords

Navigation