Skip to main content
Log in

Influence of a Low-Temperature GaAs Dislocation Filter on the Perfection of GaAs/Si Layers

  • Physical and Engineering Fundamentals of Microelectronics and Optoelectronics
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The influence of dislocation filters based on low-temperature layers (LT) of GaAs and postgrowth annealing on the perfection of GaAs/Si heterostructures is discussed. It is shown that LT-GaAs layers reduce the density of threading dislocations and surface roughness. Post-growth annealing at a temperature of 650 °C reduces the concentration of nonradiative recombination centers in GaAs/Si layers to a level close to the level in GaAs layers grown on a matched substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Thomson, A. Zilkie, J. E. Bowers, et al. “Roadmap on Silicon Photonics,” Journ. Opt. 18 (7), 073003 (2016).

    Article  ADS  Google Scholar 

  2. Yu. B. Bolkhovityanov and O. P. Pchelyakov, “GaAs Epitaxy on Si Substrates: Modern Status of Research and Engineering,” Uspekhi Fiz. Nauk 178 (5), 459–480 (2008).

    Article  Google Scholar 

  3. Y. Okada and Y. Tokumaru, “Precise Determination of the Lattice Parameter and Thermal Expansion of Silicon between 300 and 1500 K,” J. Appl. Phys. 56 (2), 314–320 (1984).

    Article  ADS  Google Scholar 

  4. S. I. Novikova, “Investigation of the Thermal Expansion of GaAs and ZnSe,” Fiz. Tverd. Tela 3 (1), 178–181 (1961).

    Google Scholar 

  5. K. Akahori, G. Wang, K. Okumura, et al., “Improvement of the MOCVD-Grown InGaP-on-Si towards High-Efficiency Solar Cell Application,” Solar Energy Mater. Solar Cells. 66 (1–4), 593–598 (2001).

    Article  Google Scholar 

  6. J. W. Lee, H. Shichijo, H. L. Tsai, and R. J. Matyi, “Defect Reduction by Thermal Annealing of GaAs Epitaxy on Si Substrates,” Appl. Phys. Lett. 50 (31), 31–33 (1987).

    Article  ADS  Google Scholar 

  7. M. Yamaguchi, “Dislocation of the Impregnation of Heteroepitaxial III-V Compound Films on Si Substrates for Optical Devices,” J. Mater. Res. 6 (2), 376–384 (1991).

    Article  ADS  Google Scholar 

  8. M. Akiyama, Y. Kawarada, and K. Kaminishi, “Growth of Single Domain GaAs Layer on (100) Oriented Si Substrate by MOCVD,” Jap. J. Appl. Phys. 23, Pt. 2, (11), L843 (1984).

    Google Scholar 

  9. D. A. Vinokurov, V. M. Lantratov, M. A. Sinitsyn, et al., “Properties and Features of Crystallization of Epitaxial GaAs Layers Grown on Si(100) Substrates by Two-Stage Precipitation in the Metalorganic Hydride Process,” Fiz. Tekh. Poluprovodn. 25 (6), 1022–1029 (1991).

    Google Scholar 

  10. T. Soga and S. Hattoriet, “Characterization of Epitaxially Grown GaAs on Si Substrates with III–V Compounds Intermediate Layers by Metalorganic Chemical Vapor Deposition,” J. Appl. Phys. 57 (10), 4578–4582 (1985).

    Article  ADS  Google Scholar 

  11. M. Yamaguchi, M. Sugo, and Y. Itoh, “Misfit Stress Dependence of Dislocation Density Reduction in GaAs Films on Si Substrates Grown by Strained-Layer Superlattices,” Appl. Phys. Lett. 54, 2568–2570 (1989).

    Article  ADS  Google Scholar 

  12. C. C. Phua, T. C. Chong, and W. S. Lau, “Improved Crystalline Quality of Molecular Beam Epitaxy Grown GaAs-on-Si Epilayer Through the Use of Low-Temperature GaAs Intermediate Layer,” Jap. J. Appl. Phys. 33, Pt. 2, (3B), L405–L408 (1994).

    Article  ADS  Google Scholar 

  13. M. O. Petrushkov, M. A. Putyato, A. K. Gutakovsky, et al., “Impact of LT-GaAs Layers on Crystalline Properties of the Epitaxial GaAs Films Grown by MBE on Si Substrates,” J. Phys. Conf. Ser. 741 (1), 012020 (2016).

    Article  Google Scholar 

  14. J. W. Matthews, “Accommodation of Misfit Across the Interface between Single-Crystal Films of Various Face-Centred Cubic Metals,” Phil. Mag. 13 (126), 1207–1221 (1966).

    Article  ADS  Google Scholar 

  15. C. G. Van de Walle, “Band Lineups and Deformation Potentials in the Model-Solid Theory,” Phys. Rev. B 39, 1871–1884 (1989).

    Article  ADS  Google Scholar 

  16. H. C. Casey, D. D. Sell, and K. W. Wecht, “Concentration Dependence of the Absorption Coefficient for n-and p-Type GaAs between 1.3 and 1.6 eV,” J. Appl. Phys. 46 (1), 250–257 (1975).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Abramkin.

Additional information

Original Russian Text © D.S. Abramkin, M.O. Petrushkov, E.A. Emel’yanov, M.A. Putyato, B.R. Semyagin, A.V. Vasev, M.Yu. Esin, I.D. Loshkarev, A.K. Gutakovskii, V.V. Preobrazhenskii, T.S. Shamirzaev, 2018, published in Avtometriya, 2018, Vol. 54, No. 2, pp. 85–92.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramkin, D.S., Petrushkov, M.O., Emel’yanov, E.A. et al. Influence of a Low-Temperature GaAs Dislocation Filter on the Perfection of GaAs/Si Layers. Optoelectron.Instrument.Proc. 54, 181–186 (2018). https://doi.org/10.3103/S8756699018020103

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699018020103

Keywords

Navigation