Skip to main content
Log in

Acetone Sensor Made of Tin Dioxide

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

Results of investigations of metal oxide chemical sensors for the detection of acetone made of tin dioxide were discussed in this review paper. There are several possibilities and technologies to manufacture of such sensors. Pure (without impurities) SnO2 and other metal oxide have low sensitivity to gases at its rather high pre-heating (operation) temperature. Doping of tin dioxide with some metals or carbon nanotubes is one way of improving the sensitivity of such metal oxide sensors. Another way is the preparation of nanosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Aroutiounian, V.M., Reports of NAS Armenia, 2019, vol. 119, p. 356.

    Google Scholar 

  2. Aroutiounian, V.M., J. Nanomedicine and Nanotechnology, 2020, vol. 11, p. 3.

    Google Scholar 

  3. Jaanisco, R. and Tan, O.K. (Eds.), Semiconductor Gas Sensors, Woodhead Publishing, 2013.

    Google Scholar 

  4. Lyshevski, S.E. (Ed.). Encyclopedia of Nanoscience and Nanotechno-logy, CRC Press, 2014.

    Google Scholar 

  5. Banika, F.-G., Chemical and Biological sensors, Technosphera Press, 2014.

    Google Scholar 

  6. Hu, L. and Li, Y., Environmental Science and Technology, 2011, vol. 56, p. 2644.

    Google Scholar 

  7. Aroutiounian, V.M., J. Contemp. Phys. (Armenian Ac. Sci.), 2019, vol. 54, p. 356.

    Google Scholar 

  8. Aroutiounian, V.M., Sensors and Transducers, 2018, vol. 228(12), p. 1.

    Google Scholar 

  9. Zhang, M. and Jiang, G., Chin. J. Chem. Phys., 2007, vol. 20, p. 317.

    Google Scholar 

  10. Yamazoe, N., Sens. Actuators B, 1991, vol. 15, p. 7.

    Google Scholar 

  11. Phani, A.R., Manorama, S.V., and Rao, V.J., Appl. Phys. Lett., 1997, vol. 71, p. 2358.

    ADS  Google Scholar 

  12. Patil, S.B., Patil, P.P., and More, M.A., Sens. Actuators B, 2007, vol. 125, p. 126.

    Google Scholar 

  13. Srivastava, J.K., Pandey, P., Mishra, V.N., and Dwivedi, R., J. Natural Gas Chemistry, 2011, vol. 20, p. 179.

    Google Scholar 

  14. Bagal, L.K., Patil, J.Y., Bagal, K.N., Mullaand, I.S., and Suryavanshi, S.S., Materials Research Innovations, 2013, vol. 17(2), p. 98.

    Google Scholar 

  15. Zhang, Y., J. Colloid Interface Sci., 2018, vol. 531, p. 74.

    ADS  Google Scholar 

  16. Alizadeh, N., Jamalabadi, H., and Tavoli, F., IEEE sensors J., 2020, vol. 20(5), p. 6240.

    Google Scholar 

  17. Li, Y., Qiao, L., Yan, D., Wang, L., Zeng, Y., and Yang, H., J. Alloys Compounds, 2014, vol. 586, p. 399.

    Google Scholar 

  18. Cheng, L., Ma, S.Y., Wang, T.T., Li, X.B., Luo, J., Li, W.Q., Mao, Y.Z., and Gz, D.J., Mater. Lett., 2014, vol. 132, p. 338.

    Google Scholar 

  19. Li, X., Liu, Y., Li, S., Huang, J., Wu, Y., and Yu, D., Nanosci. Res. Lett., 2016, vol. 11, p. 470.

    ADS  Google Scholar 

  20. Wang, T.T., Ma, S.Y., and Cheng. L., Mater. Lett., 2016, vol. 164, p. 56.

    Google Scholar 

  21. Yu, H., Wang, S.M., Xiao, C.H., Xiao, B.X., Wang, P., and Liet, Z.F., Crystal Eng. Commun., 2015, vol. 43, p. 16.

    Google Scholar 

  22. Wang, Q., Wang, B., Sun, L., and Wang, Y., Ceram. Int., 2016, vol. 42, p. 15889.

    Google Scholar 

  23. Cheng, L., Ma, S.Y., Wang, T.T., and Luo, J., Mater. Lett., 2015, vol. 143, p. 84.

    Google Scholar 

  24. Jiang, Z., Yin, M., and Wang, C., Mater. Lett., 2017, vol. 194, p. 209.

    Google Scholar 

  25. Jang, J.-S., Choi, S.-J., Kim, S.-J., Hakim, M., and Kim. I.-D., Adv. Funct. Mater., 2016, vol. 26, p. 4740.

    Google Scholar 

  26. Xu, X., Alloys Compounds, 2017, vol. 703, p. 572.

    Google Scholar 

  27. Singkammo, S., Wisitsoraat, A., Sriprachuabwong, C., Tuantranont, A., Phanichphant, S., and Liewhiran, C., ACS Appl. Mater. Inter., 2015, vol. 7, p. 3077.

    Google Scholar 

  28. Zhang, D., Liu, A., Chang, H., and Xia, B., RSC Adv., 2015, vol. 5, p. 3016.

    Google Scholar 

  29. Choi, S.-J., Jang, B.-H., Lee, S.-J., Min, B.K., Rothschild, A., and Kim, I.-D., ACS Appl. Mater. Inter., 2014, vol. 6, p. 2588.

    Google Scholar 

  30. Cheng, J.P., Wang, B.B., Zhao, M.G., Liu, F., and Zhang, X.B., Sens. Actuators B, 2014, vol. 190, p. 78.

    Google Scholar 

  31. Jiang, Z., Zhao, R., Sun, B., Nie, G., Ji, H., Lei, J., and Wang, C., Ceram. Int., 2016, vol. 42, p. 1588.

    Google Scholar 

  32. Chen, Y., Qin, H., Cao, Y., Zhang, H., and Hu, J., Sensors, 2018, vol. 18, p. 3425.

    Google Scholar 

  33. Cheng, L., Ma, S.Y., Li, S.Y., Luo, J., Li, W.Q., Li, F.M., Mao, Y.Z., Wang, T.T., and Li, Y.F., Sens. Actuators B, 2014, vol. 200, p. 181.

    Google Scholar 

  34. Usman, F., Dennis, J.O., and Abdelkreem, A., IEEE Access, 2019, vol. 7, p. 5963.

    Google Scholar 

  35. Lin, T., Lv, X., Hu, Zh., Xu, A., and Feng, C., Sensors, 2019, vol. 19, p. 233.

    Google Scholar 

  36. Jeong, Y.J., Koo, W.-T., Jang, J.-S., Kim, D.-H., Kim, M.-H., and Kim, I.-D., ACS Appl. Mater. Inter., 2018, vol. 10, p. 2016.

    Google Scholar 

  37. Jeong, Y.J., Koo, W.-T., Jang, J.-S., Kim, D.-H., Cho, H.-J., and Kim, I.-D., Nanoscale, 2018, vol. 10, p. 13713.

    Google Scholar 

  38. Koo, W.-T., Jang, J.-S., Choi, S.-J., Cho, H.-J., and Kim, I.-D., ACS Appl. Mater. Inter., 2017, vol. 9, p. 18069.

    Google Scholar 

  39. Aroutiounian, V., Adamyan, Z., Sayunts, A., Khachaturyan, E., Adamyan, A., Hernadi, K., Nemeth, Z., and Berki, P., Int.J. Emerging Trends in Science and Technology, 2014, vol. 1, p. 1309.

    Google Scholar 

  40. Aroutiounian, V.M., Sensors and Transducers, 2018, vol. 223(7), p. 9.

    Google Scholar 

  41. Aroutiounian, V.M., Lith. J. Phys., 2015, vol. 55, p. 31.

    Google Scholar 

  42. Narjinary, M., Rana, P., Sen, A., and Pal, M., Mater. Des., 2017, vol. 115, p. 158.

    Google Scholar 

  43. Sharma, A., Tomar, M., and Gupta, V., J. Mater. Chem., 2012, vol. 22, p. 23608.

    Google Scholar 

  44. Ahmadnia-Feyzabad, S., Khodadadi, A.A., Vesali-Naseh, M., and Mortazavi, Y., Sens. Actuators B, 2012, vol. 166–167, p. 150.

    Google Scholar 

  45. Salehi, S., Nikan, E., Khodadadi, A.A., and Mortazavi, Y., Sens. Actuators B., 2010, vol. 205, p. 261.

    Google Scholar 

  46. Aroutiounian, V. and Kirakosyan, V., ArmenianJournal of Physics, 2018, vol. 11, p. 160.

    Google Scholar 

  47. Aroutiounian, V.M. and Hovhannisyan, A., ArmenianJournal of Physics, 2019, vol. 12, p. 283.

    Google Scholar 

  48. Aroutiounian, V.M. and Hovhannisyan, A., Nano. Biomed. J., 2020, vol. 27, p. 20452.

    Google Scholar 

  49. Aroutiounian, V., Pokhsraryan, D., and Chilingaryan, H., ArmenianJournal of Physics, 2010, vol. 3, p. 78.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Aroutiounian.

Additional information

Translated by V. Aroutiounian

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aroutiounian, V.M. Acetone Sensor Made of Tin Dioxide. J. Contemp. Phys. 55, 213–224 (2020). https://doi.org/10.3103/S1068337220030056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337220030056

Keywords:

Navigation