Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 7, 2022

Optimization of process parameters for rectangular cup deep drawing by the Taguchi method and genetic algorithm

Optimierung der Prozessparameter für das Tiefziehen rechteckiger Formen mittels des Taguchi-Verfahrens und genetischer Algorithmen
  • Bora Sener

    MSc Bora Sener, born in 1984, studied Mechanical Engineering and finished his BSc in the Materials Science and Manufacturing Technologies Division of the Department of Mechanical Engineering at Yildiz Technical University, Istanbul, Turkey, where he has been working as a researcher since 2011. Sheet metal forming, mechanical behavior of materials and finite element analysis are his primary topics of interest.

    EMAIL logo
    and Hasan Kurtaran

    Associate Professor Dr. Hasan Kurtaran, born in 1970, studied Aerospace Engineering. He completed his MSc and his PhD at George Washington University, USA, in 1995 and 2001, respectively. He has been Associate Professor at Gebze Technical University, Turkey, since 2010. The primary topics of his scientific work are finite element analysis, design optimization, metal forming, computer aided design, machine design and solid mechanics and dynamics.

From the journal Materials Testing

Abstract

This article presents the optimization of process parameters in reducing the risk of failure due to wrinkling and fracture in deep drawing of a rectangular cup. Blank holder force, friction coefficient, punch radius and initial blank shape were chosen as design parameters. Wrinkling and fracture criteria were used as objective functions. Two-stage optimization approach was used. In the first stage optimization, optimum blank shape was determined using the Taguchi optimization method. In the second stage optimization, optimum parameter values were determined for the selected blank shape by the first stage optimization using genetic algorithm. In the second stage of optimization, response surface models based on 3-level full factorial design of experiments were constructed. Finite element simulation results were used for creating response surface models. Parameters obtained from optimization study were confirmed by conducting deep drawing simulations using commercial code DYNAFORM 5.9.2. Optimum results showed that proposed optimization methodology can solve wrinkling and fracture problems in the sheet metal forming process.

Abstract

In diesem Beitrag wird die Optimierung von Prozessparametern vorgestellt, um das Risiko eines Versagens infolge Knitterns und Bruchs beim Tiefziehen einer rechtwinkligen Form zu reduzieren. Die Haltekraft des Rohlings, der Reibkoeffizient, der Stempelradius und die Ausgangsform des Rohlings wurden als Designparameter ausgewählt. Die Knitter- und die Bruchkriterien wurden als Zielfunktionen verwendet. Es wurde ein zweistufiger Optimierungsprozess angewandt. In der ersten Stufe der Optimierung wurde die optimale Form des Rohlings mittels des Taguchi-Optimierungsverfahrens bestimmt. In der zweiten Optimierungsstufe wurden Antwort-Oberflächenmodelle basierend auf einem vollen faktoriellen Design der Experimente für drei Ebenen konstruiert. Es wurden Ergebnisse von Finite Elemente Simulationen genutzt, um die Antwort-Oberflächenmodelle zu kreieren. Die Parameter, die sich aus der Optimierungsstudie ergaben, wurden bestätigt, indem Tiefziehsimulationen mittels des kommerziellen Codes DYNAFORM 5.9.2 ausgeführt wurden. Die optimalen Ergebnisse zeigen, dass die vorgeschlagene Optimierungsmethode die Schwierigkeiten infolge Knitterns oder Bruchs in der Metallblechumformung lösen kann.


MSc. Bora Sener Department of Mechanical Engineering Yildiz Technical University, 34349, Besiktas, Istanbul, Turkey

About the authors

Bora Sener

MSc Bora Sener, born in 1984, studied Mechanical Engineering and finished his BSc in the Materials Science and Manufacturing Technologies Division of the Department of Mechanical Engineering at Yildiz Technical University, Istanbul, Turkey, where he has been working as a researcher since 2011. Sheet metal forming, mechanical behavior of materials and finite element analysis are his primary topics of interest.

Associate Professor Dr. Hasan Kurtaran

Associate Professor Dr. Hasan Kurtaran, born in 1970, studied Aerospace Engineering. He completed his MSc and his PhD at George Washington University, USA, in 1995 and 2001, respectively. He has been Associate Professor at Gebze Technical University, Turkey, since 2010. The primary topics of his scientific work are finite element analysis, design optimization, metal forming, computer aided design, machine design and solid mechanics and dynamics.

References

1 H. Sattari, R. Sedaghati, R. Ganesan: Analysis and design optimization of deep drawing process: Part II: Optimization, Journal of Materials Processing Technology 184 (2007), pp. 84-92 DOI:10.1016/j.jmatprotec.2006.11.00810.1016/j.jmatprotec.2006.11.008Search in Google Scholar

2 T. Katayama, E. Nakamachi, Y. Nakamura, T. Ohata, Y. Morishita, H. Murase: Development of process design system for press forming – multi-objective optimization of intermediate die shape in transfer forming, Journal of Materials Processing Technology 155-156 (2004), pp. 1564-1570 DOI:10.1016/j.jmatprotec.2004.04.25310.1016/j.jmatprotec.2004.04.253Search in Google Scholar

3 O. Schenk, M. Hillmann: Optimal design of metal forming die surfaces with evolution strategies, Computers and Structures 82 (2004), pp. 1695-1705 DOI:10.1016/j.compstruc.2004.03.05510.1016/j.compstruc.2004.03.055Search in Google Scholar

4 W. Hu, L. G. Yao, Z. Z. Hua: Optimization of sheet metal forming processes by adaptive responsive surface based on intelligent sampling method, Journal of Materials Processing Technology 197 (2008), pp. 77-88 DOI:10.1016/j.jmatprotec.2007.06.01810.1016/j.jmatprotec.2007.06.018Search in Google Scholar

5 H. Naceur, S. Ben-Elechi, J. L. Batoz, C. Knopt-Lenoir: Response surface methodology for the rapid design of aluminum sheet metal forming parameters, Materials and Design 29 (2008), pp. 781-790 DOI:10.1016/j.matdes.2007.01.01810.1016/j.matdes.2007.01.018Search in Google Scholar

6 H. Huh, S. H. Kim: Optimum process design in sheet-metal forming with finite element analysis, Journal of Engineering Materials and Technology 123 (2001), pp. 476-481 DOI:10.1115/1.139557910.1115/1.1395579Search in Google Scholar

7 P. Breitkopt, H. Naceur, A. Rassineux: Moving least squares response surface approximation: Formulation and metal forming applications, Computers and Structures 83 (2005), pp. 1411-1428 DOI:10.1016/j.compstruc.2004.07.01110.1016/j.compstruc.2004.07.011Search in Google Scholar

8 T. Jannson, L. Nilsson: Minimizing the risk of failure in a sheet metal forming process, Structural and Multidisciplinary Optimization 31 (2006), pp. 320-332 DOI:10.1007/s00158-005-0604-310.1007/s00158-005-0604-3Search in Google Scholar

9 R. Di Lorenzo, G. Ingarao, L. Marretta, F. Micari: Deep drawing process design: A multi objective optimization approach, Key Engineering Materials 410-411 (2009), pp. 601-608 DOI:10.4028/www.scientific.net/KEM.410-411.60110.4028/www.scientific.net/KEM.410-411.601Search in Google Scholar

10 G. Sun, G. Li, Z. Gong, X. Cui, X. Yang, Q. Li: Multi-objective robust optimization method for draw bead design in sheet metal forming, Materials and Design 31 (2010), pp. 1917-1929 DOI:10.1016/j.matdes.2009.10.05010.1016/j.matdes.2009.10.050Search in Google Scholar

11 W. Hu, L. Enying, G. Y. Li: Development of hybrid fuzzy regression-based metamodeling technique for optimization of sheet metal forming problems, Materials and Design 30 (2009), pp. 2854-2866 DOI:10.1016/j.matdes.2009.01.01510.1016/j.matdes.2009.01.015Search in Google Scholar

12 Y. Q. Li, Z. S. Cui, X. Y. Ruan, D. J. Zhang: CAE-based six sigma robust optimization for deep-drawing sheet metal process, International Journal of Advanced Manufacturing Technology 30 (2006), pp. 631-637 DOI:10.1007/s00170-005-0121-y10.1007/s00170-005-0121-ySearch in Google Scholar

13 G. Sun, G. Li, Z. Gong, G. He, Q. Li: Radial basis functional model for multi-objective sheet metal forming optimization, Engineering Optimization 43 (2011), pp. 1351-1366 DOI:10.1080/0305215X.2011.55707210.1080/0305215X.2011.557072Search in Google Scholar

14 R. Shivpuri, W. Zhang: Robust design of spatially distributed friction for reduced wrinkling and thinning failure in sheet drawing, Materials and Design 30 (2009), pp. 2043-2055 DOI:10.1016/j.matdes.2008.08.04310.1016/j.matdes.2008.08.043Search in Google Scholar

15 P.Ludwik: Elemente der Technologischen Mechanik, Springer-Verlag Berlin Heidelberg, Germany (1909)10.1007/978-3-662-40293-1Search in Google Scholar

16 J. Wu, Z. Ma, Y. Zhou, C. Lu: Prediction of failure modes during deep drawing of metal sheets with nickel coating, Journal of Materials Science and Technology 29 (2013), pp. 1059-1066 DOI:10.1016/j.jmst.2013.08.00110.1016/j.jmst.2013.08.001Search in Google Scholar

17 L. Wei, Y. Yuying: Multi-objective optimization of sheet metal forming process using Pareto based genetic algorithm, Journal of Materials Processing Technology 208 (2008), pp. 499-506 DOI:10.1016/j.jmatprotec.2008.01.01410.1016/j.jmatprotec.2008.01.014Search in Google Scholar

18 B. H. Lee, Y. T. Keum, R. H. Wagoner: Modeling of the friction caused by lubrication and surface roughness in sheet metal forming, Journal of Materials Processing Technology 130-131 (2002), pp. 60-63 DOI:10.1016/S0924-0136(02)00784-710.1016/S0924-0136(02)00784-7Search in Google Scholar

19 Y. Wu, A. Wu: Taguchi Methods for Robust Design, 1st Ed., American Society of Mechanical Engineers, New York, USA (2000)10.1115/1.801578Search in Google Scholar

20 R. H. Myers, D. C. Montgomery, C. M. Anderson-Cook: Response Surface Methodology: Process and Product in Optimization Using Designed Experiments, 3rd Ed., John Wiley and Sons, New York, USA (1995)Search in Google Scholar

21 D. E. Goldberg: Genetic Algorithms in Search, Optimization and Machine learning, Addison-Wesley Longman Publishing, Boston, USA (1989)Search in Google Scholar

Published Online: 2022-03-07

© 2016 Carl Hanser Verlag, München

Downloaded on 28.5.2024 from https://www.degruyter.com/document/doi/10.3139/120.110840/html
Scroll to top button