Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 19, 2013

Multiple condensation induced water hammer events, experiments and theoretical investigations

Experimentelle und theoretische Untersuchungen zu Kondensationsschlägen
  • I. F. Barna and Gy. Ezsöl
From the journal Kerntechnik

Abstract

We investigate steam condensation induced water hammer (CIWH) phenomena and present experimental and theoretical results. Some of the experiments were performed in the PMK-2 facility, which is a full-pressure thermalhydraulic model of the nuclear power plant of VVER-440/312 type and located in the Atomic Energy Research Institute Budapest, Hungary. Other experiments were done in the ROSA facility in Japan. On the theoretical side CIWH is studied and analyzed with the WAHA3 model based on two-phase flow six first-order partial differential equations that present one dimensional, surface averaged mass, momentum and energy balances. A second order accurate high-resolution shock-capturing numerical scheme was applied with different kind of limiters in the numerical calculations. The applied two-fluid model shows some similarities to RELAP5 which is widely used in the nuclear industry to simulate nuclear power plant accidents. New features are the existence of multiple, independent CIWH pressure peaks both in experiments and in simulations. Experimentally measured and theoretically calculated CIWH pressure peaks are in qualitative agreement. However, the computational results are very sensitive against flow velocity.

Kurzfassung

Die spontane Kondensation von Dampfblasen führt in technischen Systemen zu starken Kondensationsschlägen, die unerwünscht sind und deren Auftreten und Vermeidung untersucht wird. Experimente zu Kondensationsschlägen werden u.a. in der vom Atomic Energy Research Institute Budapest in Ungarn betriebenen Versuchsanlage PMK-2 und in der Versuchsanlage ROSA in Japan durchgeführt. Für die theoretischen Untersuchungen von Kondensationsschlägen wurde das Programm WAHA3 entwickelt. Dieses basiert auf der Beschreibung der Zweiphasenströmung mit Hilfe von sechs Differentialgleichungen 1. Ordnung, die in eindimensionale über den Querschnitt gemittelte Massen-, Impuls- und Energiebilanzen überführt werden. Das zur Lösung der Differentialgleichungen eingesetzte numerische Verfahren ist zweiter Ordnung und so hochauflösend, dass auftretende Kondensationsschläge erfasst werden. Das Hauptaugenmerk dieses Beitrags liegt in der Messung und Berechnung von verschiedenartigen unabhängigen Kondensationsschlagereignissen. Dabei zeigte sich eine gute qualitative Übereinstimmung bei den gemessenen und berechneten Druckpeaks, allerdings reagieren die berechneten Daten sehr sensitiv auf den Parameter Strömungsgeschwindigkeit.


Dr. Imre Ferenc Barna (E-mail: ) and György Ézsöl (E-mail: )

References

1 OECD/NEA ROSA Project Experimental Data/Information Transfer. Thermalhydraulic Safety Research Group Nuclear Safety Research Center Japan Atomic Energy Agency Quick-Look Data Report of OECD/NEA ROSA Project Test 2 (Condensation-Induced Water Hammer Tests: ST-WH-05, 06, 07, 08, 09, 10 and 11 in JAEA) March 14, 2008Search in Google Scholar

2 Szabados, L.; Ézsöl, Gy.; Pernetzky, L.; Tóth, I.: PMK-2handbook, technical specification of the Hungarian integral test facility for VVER-440/213 safety analysis and stream line water hammere experiments. Akadémiai Kiadó, Budapest (2007)Search in Google Scholar

3 Tiselj, I.; Horvath, A.; Cerne, G.; Gale, J.; Parzer, I.; Mavko, B.; Giot, M.; Seynhaeve, J. M.; Kucienska, B.; Lemonnier, H.: WAHA3 code manual, Deliverable D10 of the WAHALoads project, March 2004Search in Google Scholar

4 Carlson, K. E.; Riemke, R. A.; Rouhani, S. Z.; Shumway, R. W.; Weaver, W. L.: RELAP5/MOD3 Code Manual. Vol 1–7, NUREG-CR/5535, EG&G Idaho, Idaho Falls 1990Search in Google Scholar

5 TRAC-PF1/MOD1: An Advanced Best-Estimate Computer Program for Pressurized Water Reactor Thermal-Hydraulic Analysis, NUREG/CR-3858 L.A-10157-MS 1986Search in Google Scholar

6 Bestion, D.: The Physical closure laws in the CATHARE code. Nucl. Eng. and Des.124 (1990) 481Search in Google Scholar

7 Tiselj, I.; Petelin, S.: Modelling of Two-Phase Flow with Second-Order Accurate Scheme. Journal of Comput. Phys.136 (1997) 50310.1006/jcph.1997.5778Search in Google Scholar

8 Stewart, H. B.; Wendroff, B.: Two-Phase flow: Models and Methods. J. Comp. Phys.56 (1984) 36310.1016/0021-9991(84)90103-7Search in Google Scholar

9 Menikoff, R.; Plohr, B.: The Riemann Problem fluid flow of real materials. Rev. Mod. Phys.61 (1989) 7510.1103/RevModPhys.61.75Search in Google Scholar

10 Seynhaeve, J. M.: Water properties package. Catholic University of Louvain (1992) Project Built with IAPS from Lester, Gallaher and Kell, McGraw-Hill 1984Search in Google Scholar

11 LeVeque, R. J.: Numerical Methods for Conservation Laws. Lecture in Mathematics, ETH, Zurich (1992)10.1007/978-3-0348-8629-1Search in Google Scholar

12 Barna, I. F.; Imre, A. R.; Baranyai, G.; Ézsöl, G.: Experimental and theoretical study of steam condensation induced water hammer phenomena, Nuclear Engineering and Design240 (2010) 14610.1016/j.nucengdes.2009.09.027Search in Google Scholar

13 Griffith, P.: Screening Reactor System/Water Piping Systems for Water Hammer NUREG/CR-6519, Massachusetts Institute of Technology, 199710.2172/527558Search in Google Scholar

14 Barna, I. F.; Rosta, L.; Mezei, F.: Two-phase flow model for energetic proton beam induced pressure waves in mercury target systems in the planned European Spallation Source. Eur. Phys. J. B.66 (2008) 419Search in Google Scholar

15 Handbook on Lead-bismuth Eutectic Alloy and Lead Properties, Materials Compatibility, Termal-hydraulics and Technologies. OECD/NEA Nuclear Sciences Committee Working Party On Scientific Issues of the Fuel Cycle Working Group on Lead-bismuth Eutectic Nuclear Energy Agency No. 6195Search in Google Scholar

Received: 2011-02-27
Published Online: 2013-04-19
Published in Print: 2011-08-01

© 2011, Carl Hanser Verlag, München

Downloaded on 2.6.2024 from https://www.degruyter.com/document/doi/10.3139/124.110154/html
Scroll to top button