Skip to content
BY 4.0 license Open Access Published by De Gruyter January 29, 2018

Phase-field simulation of the solidified microstructure in a new commercial 6××× aluminum alloy ingot supported by experimental measurements

  • Ming Wei , Lijun Zhang , Mingjun Yang , Kai Li , Shuhong Liu , Pizhi Zhao and Yong Du

Abstract

This work attempts to quantitatively describe the microstructural evolution in a new commercial 6××× aluminum alloy developed in an industrial laboratory (Al-0.87Si-0.81Mg-0.51Zn-0.46Cu-0.19Fe-0.09Mn, in wt.%), during solidification by using the phase-field simulation supported by experimental measurements. Coupling to the CALPHAD thermodynamic and atomic mobility databases is attained for providing energy and diffusivity information during the phase-field simulation. Two different resolutions are used in order to resolve the primary α-(Al) dendrite and the faceted β-AlFeSi eutectic phase in the phase-field simulations. The phase-field simulated microstructure morphology is verified by experimental results. Moreover, the microsegregation and back-diffusion phenomena in the primary α-(Al) dendrite are also analyzed.


*Correspondence address, Prof. Dr. Lijun Zhang, State Key Lab of Powder Metallurgy, Central South University, Changsha 410083, P.R. China, Tel.: +86 731 88877963, Fax: +86 731 88710855, E-mail:

References

[1] L.F.Mondolfo: Aluminum alloys: structure and properties. Butterworths, London (1976).10.1016/B978-0-408-70932-3.50008-5Search in Google Scholar

[2] I.N.Fridlyander, V.G.Sister, O.E.Grushko, V.V.Berstenev, L.M.Sheveleva, L.A.Ivanova: Met. Sci. Heat Treat.44 (2002) 365370. 10.1023/A:1021901715578Search in Google Scholar

[3] J.Hirsch: Trans. Nonferr. Metal Soc. China24 (2014) 19952002. 10.1016/S1003-6326(14)63305-7Search in Google Scholar

[4] O.Engler, J.Hirsch: Mater. Sci. Eng.A 336 (2002) 249262. 10.1016/S0921-5093(01)01968-2Search in Google Scholar

[5] W.S.Miller, L.Zhuang, J.Bottema, A.Wittebrood, P.D.Smet, A.Haszler, A.Vieregge: Mater. Sci. Eng.A 280 (2000) 3749. 10.1016/S0921-5093(99)00653-XSearch in Google Scholar

[6] O.Engler, E.Brünger: Mater. Sci. Forum396 (2002) 345350. 10.4028/www.scientific.net/MSF.396-402.345Search in Google Scholar

[7] A.Kermanpur, M.Eskandari, H.Purmohamad, M.A.Soltani, R.Shateri: Mater. Design31 (2010) 10961104. 10.1016/j.matdes.2009.09.045Search in Google Scholar

[8] X.Wu: Intermetallics14 (2006) 11141122. 10.1016/j.intermet.2005.10.019Search in Google Scholar

[9] B.Dang, C.C.Liu, F.Liu, Y.Z.Liu, Y.B.Li: Trans. Nonferr. Met. Soc. China26 (2016) 634642. 10.1016/S1003-6326(16)64152-3Search in Google Scholar

[10] V.Hansen, B.Hauback, M.Sundberg, C.R⊘mming, J.Gj⊘nnes: Acta Crystallogr.B 54 (1998) 351357. 10.1107/S0108768197017047Search in Google Scholar

[11] R.S.Claves, A.R.Bandar, W.Z.Misiolek, J.R.Michael: Microsco. Microana.10 (2004) 11381139. 10.1017/S1431927604886094Search in Google Scholar

[12] L.Sweet, S.M.Zhu, S.X.Gao, J.A.Taylor, M.A.Easton: Metall. Mater. Trans.A 42 (2011) 17371749. 10.1007/s11661-010-0595-6Search in Google Scholar

[13] W.J.Boettinger, J.A.Warren, C.Beckermann, A.Karma: Annu. Rev. Mater. Res.32 (2002) 163194. 10.1146/annurev.matsci.32.101901.155803Search in Google Scholar

[14] M.Plapp: J. Cryst. Growth303 (2007) 4957. 10.1016/j.jcrysgro.2006.12.064Search in Google Scholar

[15] N.Moelans, B.Blanpain, P.Wollants: CALPHAD32 (2008) 268294. 10.1016/j.calphad.2007.11.003Search in Google Scholar

[16] A.Karma, D.Tourret: Curr. Opin. Solid St. M.20 (2016) 2536. 10.1016/j.cossms.2015.09.001Search in Google Scholar

[17] I.Steinbach: Modelling Simul. Mater. Sci. Eng.17 (2009) 073001. 10.1088/0965-0393/17/7/073001Search in Google Scholar

[18] L.J.Zhang, M.Stratmann, Y.Du, B.Sundman, I.Steinbach: Acta Mater.88 (2015) 156169. 10.1016/j.actamat.2014.11.037Search in Google Scholar

[19] I.Steinbach, F.Pezzolla, B.Nestler, M.Seeßelberg, R.Prieler, G.J.Schmitz, J.L.Rezende: PhysicaD 94 (1996) 135147. 10.1016/0167-2789(95)00298-7Search in Google Scholar

[20] J.Eiken, B.Böttger, I.Steinbach: Phys. Rev.E 73 (2006) 066122. PMid:16906929; 10.1103/PhysRevE.73.066122Search in Google Scholar PubMed

[21] web.micress.de (Accessed on 2017-04-27).Search in Google Scholar

[22] S.G.Fries, B.Boettger, J.Eiken, I.Steinbach: Int. J. Mater. Res.100 (2009) 128134. 10.3139/146.110013Search in Google Scholar

[23] L.J.Zhang, I.Steinbach, Y.Du: Int. J. Mater. Res.102 (2011) 371380. 10.3139/146.110470Search in Google Scholar

[24] L.J.Zhang, Y.Du: J. Phase Equilib. Diff.37 (2016) 259260. 10.1007/s11669-015-0422-2Search in Google Scholar

[25] B.Böttger, J.Eiken, I.Steinbach: Acta Mater.54 (2006) 26972704. 10.1016/j.actamat.2006.02.008Search in Google Scholar

[26] B.Böttger, A.Carré, J.Eiken, G.J.Schmitz, M.Apel: Trans. Indian I. Metals62 (2009) 299304. 10.1007/s12666-009-0046-5Search in Google Scholar

[27] J.Eiken, M.Apel, S.M.Liang, R.Schmid-Fetzer: Acta Mater.98 (2015) 152163. 10.1016/j.actamat.2015.06.056Search in Google Scholar

[28] M.Wei, Y.Tang, L.J.Zhang, Y.Du: Metall. Mater. Trans.A 46 (2015) 31823191. 10.1007/s11661-015-2911-7Search in Google Scholar

[29] K.Wang, M.Wei, L.Zhang, Y.Du: Metall. Mater. Trans.A 47 (2016) 15101516. 10.1007/s11661-016-3358-1Search in Google Scholar

[30] R.F.Almgren: J. Appl. Math.59 (1999) 20862107. 10.1137/S0036139997330027Search in Google Scholar

[31] A.Karma, W.J.Rappel: Phys. Rev.E 53 (1996) R3017. PMid:9964755; 10.1103/PhysRevE.53.R3017Search in Google Scholar PubMed

[32] A.M.Mullis, J.Rosam, P.K.Jimack: J. Cryst. Growth312 (2010) 18911897. 10.1016/j.jcrysgro.2010.03.009Search in Google Scholar

[33] A.Karma: Phys. Rev. Lett.87 (2001) 115701. 10.1103/PhysRevLett.87.115701Search in Google Scholar PubMed

[34] S.G.Kim: Acta Mater.55 (2007) 43914399. 10.1016/j.actamat.2007.04.004Search in Google Scholar

[35] A.Gopinath, R.C.Armstrong, R.A.Brown: J. Cryst. Growth291 (2006) 272289. 10.1016/j.jcrysgro.2006.03.001Search in Google Scholar

[36] M.Ohno, K.Matsuura: Phys. Rev.E 79 (2009) 031603. PMid:19391950; 10.1103/PhysRevE.79.031603Search in Google Scholar PubMed

[37] S.Y.Pan, M.F.Zhu: Acta Mater.58 (2010) 340352. 10.1016/j.actamat.2009.09.012Search in Google Scholar

[38] A.Carre, B.Bottger, A.Apel: J. Cryst. Growth380 (2013) 513. 10.1016/j.jcrysgro.2013.05.032Search in Google Scholar

[39] G.Boussinot, E.A.Brener: Phys. Rev.E 88 (2013) 022406. PMid:24032848; 10.1103/PhysRevE.88.022406Search in Google Scholar PubMed

[40] A.Fang, Y.Mi: Phys. Rev.E 87 (2013) 012402. PMid:23410339; 10.1103/PhysRevE.87.012402Search in Google Scholar PubMed

[41] Y.Du, S.Liu, L.J.Zhang, H.Xu, D.Zhao, A.Wang: CALPHAD35 (2011) 427445. 10.1016/j.calphad.2011.06.007Search in Google Scholar

[42] Y.Du, L.J.Zhang, S.Cui, D.Zhao, D.Liu, W.Zhan, W.Sun, W.Jie: Sci. China Tech. Sci.55 (2012) 30627. 10.1007/s11431-011-4692-6Search in Google Scholar

[43] L.J.Zhang, D.Liu, W.Zhang, S.Wang, Y.Tang, N.Ta, M.Wei, Y.Du: Mater. Sci. Forum794–796 (2014) 611616. 10.4028/www.scientific.net/MSF.794-796.611Search in Google Scholar

[44] M.Gündüz, J.D.Hunt: Acta Metall.33 (1985) 16511672. 10.1016/0001-6160(85)90161-0Search in Google Scholar

[45] W.Khalifa, A.M.Samuel, F.H.Samuel, H.W.Doty, S.Valtierra: Int. J. Cast Metal Res.19 (2006) 156166. 10.1179/136404606225023372Search in Google Scholar

[46] G.Sha, K.O'Reilly, B.Cantor: Mater. Sci. Forum519 (2006) 17211726. 10.4028/www.scientific.net/MSF.519-521.1721Search in Google Scholar

[47] S.Terzi, J.A.Taylor, Y.H.Cho, L.Salvo, M.Suéry, E.Boller, A.K.Dahle: Acta Mater.58 (2010) 53705380. 10.1016/j.actamat.2010.06.012Search in Google Scholar

Received: 2017-06-05
Accepted: 2017-08-15
Published Online: 2018-01-29
Published in Print: 2018-02-12

© 2018, Carl Hanser Verlag, München

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 26.5.2024 from https://www.degruyter.com/document/doi/10.3139/146.111584/html
Scroll to top button