Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 6, 2013

Melting in a Single Screw Extruder: Experiments and 3D Finite Element Simulations

  • A. Altınkaynak , M. Gupta , M. A. Spalding and S. L. Crabtree

Abstract

The melting of an ABS resin was simulated using a three-dimensional finite element simulation of the two-phase flow in the compression section of a single-screw extruder. Screw freezing experiments were also conducted to compare the numerical predictions with the corresponding experimental data. Numerical simulations as well as experiments exhibited the Maddock melting mechanism and numerical predictions were in good agreement with the corresponding experimental data. The sensitivity of the melting profile to various material properties and processing conditions was numerically analyzed. With a constant flow rate enforced at the entrance of the screw channel, the screw and barrel temperature were found to have a minor effect on the melting profile. However, these parameters were found to have a significant effect on the predicted pressure profile along the screw channel. When the zero-traction boundary condition was imposed at the entrance of the screw channel, a change in the screw or barrel temperature affected the flow rate in the screw channel, which resulted in a significant change in the solid fraction at the same cross-section.


Mail address: Mahesh Gupta, Michigan Technological University, Houghton, MI, 49931, USA. E_mail:

References

Agur, E. E., Vlachopoulos, J., “Numerical Simulation of a Single-Screw Plasticating Extruder”, Polym. Eng. Sci., 22, 10841094(1982), DOI: 10.1002/pen.760221706Search in Google Scholar

Arnold, D. N., et al., “A Stable Finite Element for the Stokes Equations”, Calcolo, 21, 337344(1984), DOI: 10.1007/BF02576171Search in Google Scholar

Bathe, K. J.: Finite Element Procedure, Prentice Hall, Englewood Cliffs, New Jersey(1996)Search in Google Scholar

Brooks, A. N., Hughes, T. J. R., “Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows with Particular Emphasis on the Incompressible Navier-Stokes Equations”, Comp. Meth. Appl. Mech. Eng., 32, 199259(1982), DOI: 10.1016/0045-7825(82)90071-8Search in Google Scholar

Bruker, I., Balch, G. S., “Melting Mechanism in Single Screw Extrusion”, Polym. Eng. Sci., 29, 258267(1989), DOI: 10.1002/pen.760290407Search in Google Scholar

Campbell, G. A., et al., “Temperature Rise in a Single Screw Pump-Extruder”, SPE ANTEC Tech. Papers, 152156(2001)Search in Google Scholar

Campbell, G. A., et al., “Some New Observations Relative to Melting in Single Screw Extruders”, SPE ANTEC Tech. Papers, 213217(2003)Search in Google Scholar

Chiang, H. H., et al., “A Unified Simulation of the Filling and Postfilling Stages in Injection Molding. Part I: Formulation”, Polym. Eng. Sci., 31, 116124(1991), DOI: 10.1002/pen.760310210Search in Google Scholar

Chung, C. I., “A New Theory for Single-Screw Extrusion: Part I”, Modern Plastics, 45, 178198(1968)Search in Google Scholar

Cox, A. P. D., Fenner, R. T., “Melting Performance in the Single Screw Extrusion of Thermoplastics”, Polym. Eng. Sci., 20, 562571(1980), DOI: 10.1002/pen.760200809Search in Google Scholar

Cox, A. P. D., et al., “The Melting Behavior of a Low Density Polyethylene Powder in a Screw Extruder”, Polym. Eng. Sci., 21, 8692(1981), DOI: 10.1002/pen.760210206Search in Google Scholar

Dekker, J., “Improved Screw Design for the Extrusion of Polypropylene”, Kunststoffe, 66, 57(1976)Search in Google Scholar

Donovan, R. C., “A Theoretical Melting Model for Plasticating Extruders”, Polym. Eng. Sci., 11, 247257(1971), DOI: 10.1002/pen.760110313Search in Google Scholar

Donovan, R. C., “Pressure Profiles in Plasticating Extruders”, Polym. Eng. Sci., 11, 484491(1971), DOI: 10.1002/pen.760110607Search in Google Scholar

Edmondson, I. R., Fenner, R. T., “Melting of Thermoplastics in Single Screw Extruders”, Polymer, 16, 4956(1975), DOI: 10.1016/0032-3861(75)90095-6Search in Google Scholar

Gale, G. M., “Dry-Blend Extrusion of Rigid PVC”, Plastics and Polymer, 38, 183191(1970)Search in Google Scholar

Halmos, A. L., et al., “Melting in Single Screw Extruders”, Polymer, 19, 11991216(1978), DOI: 10.1016/0032-3861(78)90072-1Search in Google Scholar

Harari, I., Hughes, T. J. R., “Stabilized Finite Element Methods for Steady Advection-Diffusion with Production”, Comp. Meth. Appl. Mech. Eng., 115, 165191(1994), DOI: 10.1016/0045-7825(94)90193-7Search in Google Scholar

Hinrichs, D. R., Lillileht, L. U., “A Modified Melting Model for Plastifying Extruders”, Polym. Eng. Sci., 10, 268278(1970), DOI: 10.1002/pen.760100504Search in Google Scholar

Hogan, T. A., et al., “The Melting Characteristics of Polycarbonate Resins”, SPE ANTEC Tech. Papers, 384388(2002)Search in Google Scholar

Hong, B. K., et al., “Dependence of Melting Behavior on Melt Index”, SPE ANTEC Tech. Papers, 272276(2001)Search in Google Scholar

Hughes, T. J. R., et al., “A New Finite Element Formulation for Computational Fluid Dynamics: II. Beyond SUPG”, Comp. Meth. Appl. Mech. Eng., 54, 341355(1986), DOI: 10.1016/0045-7825(86)90110-6Search in Google Scholar

Hughes, T. J. R., Mallet, M., “A New Finite Element Formulation for Computational Fluid Dynamics: III. The Generalized Streamline Operator for Multidimensional Advective-Diffusive Systems”, Comp. Meth. Appl. Mech. Eng., 58, 305328(1986), DOI: 10.1016/0045-7825(86)90152-0Search in Google Scholar

Hughes, T. J. R., Mallet, M., “A New Finite Element Formulation for Computational Fluid Dynamics: IV. A Discontinuity-Capturing Operator for Multidimensional Advective-Diffusive Systems”, Comp. Meth. Appl. Mech. Eng., 58, 329336(1986), DOI: 10.1016/0045-7825(86)90153-2Search in Google Scholar

Hughes, T. J. R., et al., “A New Finite Element Formulation for Computational Fluid Dynamics: VIII. The Galerkin/Least-Squares Method for Advective-Diffusive Equations”, Comp. Meth. Appl. Mech. Eng., 73, 173189(1989), DOI: 10.1016/0045-7825(89)90111-4Search in Google Scholar

Kacir, L., Tadmor, Z., “Solids Conveying in Screw Extruders Part III: The Delay Zone”, Polym. Eng. Sci., 12, 387395(1972), DOI: 10.1002/pen.760120511Search in Google Scholar

Klenk, P., “Plastifiziermodelle für die Verarbeitung benetzender und nichtbenetzender Thermoplaste auf Einschnecken-Extrudern”, Rheologica Acta, 7, 7578(1968), DOI: 10.1007/BF01970317Search in Google Scholar

Kulas, F. R., Thorshaug, N. P., “PVC Powder Extrusion: Melting Properties and Particle Morphology”, J. Appl. Polym. Sci., 23, 17811794(1979), DOI: 10.1002/app.1979.070230618Search in Google Scholar

Lindt, J. T., “A Dynamic Melting Model for a Single-Screw Extruder”, Polym. Eng. Sci., 16, 284291(1976), DOI: 10.1002/pen.760160411Search in Google Scholar

Lindt, J. T., “Pressure Development in the Melting Zone of a Single-Screw Extruder”, Polym. Eng. Sci., 21, 11621166(1981), DOI: 10.1002/pen.760211708Search in Google Scholar

Lindt, J. T., Elbirli, B., “Effect of the Cross-Channel Flow on the Melting Performance of a Single-Screw Extruder”, Polym. Eng. Sci., 25, 412418(1985), DOI: 10.1002/pen.760250706Search in Google Scholar

Maddock, B., “A Visual Analysis of Flow and Mixing in Extruder Screws”, SPE ANTEC Tech. Papers, 15, 383389(1959)Search in Google Scholar

Marshall, D. I., et al., “Measurement of Screw and Plastic Temperature Profiles in Extruders”, SPE J., 20, 329334(1964)Search in Google Scholar

Marshall, D. I., Klein, I., “Fundamentals of Plasticating Extrusion. II. Experiments”, Polym. Eng. Sci., 6, 191197(1966), DOI: 10.1002/pen.760060304Search in Google Scholar

Martin, G., “Contribution to Determination of Melt Zone Length in Thread of Single-Screw Extruder”, Kunststofftechnik, 7, 238246(1969)Search in Google Scholar

Menges, G., Klenk, K. P., “Melting and Plasticating of Unplasticized PVC Powder in the Screw Extruder”, Kunststoffe, 57, 598603(1967)Search in Google Scholar

Mennig, G., “Observations Made in the Extrusion of Wall-Slipping Rigid PVC”, Kunststoffe, 71, 359362(1981)Search in Google Scholar

Mizukami, A., Hughes, T. J. R., “A Petrov-Galerkin Finite Element Method for Convection-Dominated Flows: An Accurate Upwinding Technique for Satisfying the Maximum Principle”, Comp. Meth. Appl. Mech. Eng., 50, 181193(1985), DOI: 10.1016/0045-7825(85)90089-1Search in Google Scholar

Mount, E. M., Chung, C. I., “Melting Behavior of Solid Polymers on a Metal Surface at Processing Conditions”, Polym. Eng. Sci., 18, 711720(1978), DOI: 10.1002/pen.760180906Search in Google Scholar

Mount, E. M., et al., “Analytical Melting Model for Extrusion: Melting Rate of Fully Compacted Solid Polymers”, Polym. Eng. Sci., 22, 729737(1982), DOI: 10.1002/pen.760221202Search in Google Scholar

Mount, E. M., “Impact of Rheological Properties on Melting Rate Calculations”, SPE ANTEC Tech. Papers, 328334(2005)Search in Google Scholar

Pearson, J. R. A., “On the Melting of Solids Near a Hot Moving Interface, with Particular Reference to Beds of Granular Polymers”, Int. J. Heat Mass Transfer, 19, 405411(1976), DOI: 10.1016/0017-9310(76)90096-XSearch in Google Scholar

Potente, H., “An Analytical Model of Partial and Thorough Melting in Single-Screw Extruders”, Int. Polym. Proc., 6, 297303(1991)Search in Google Scholar

Shapiro, J., et al., “Melting in Single Screw Extruders”, Polymer, 17, 905918(1976), DOI: 10.1016/0032-3861(76)90258-5Search in Google Scholar

Spalding, M. A., et al., “Three Dimensional Analysis of the Metering Section of a Single Screw Extruder”, SPE-ANTEC Tech. Papers, 15331541(1993)Search in Google Scholar

Stangland, E. E., et al., “Fundamental Characterization of Polypropylene Extrusion”, SPE ANTEC Tech. Papers, 302306(2002)Search in Google Scholar

Street, L. F., “Plastifying Extrusion”, Int. Plast. Eng., 1, 289296(1961)Search in Google Scholar

Sundstrom, D. W., Young, C. C., “Melting Rates of Crystalline Polymers under Shear Conditions”, Polym. Eng. Sci., 12, 5963(1972), DOI: 10.1002/pen.760120110Search in Google Scholar

Sundstrom, D. W., Lo, J. R., “Softening Rates for Polystyrene under Shear Conditions”, Polym. Eng. Sci., 18, 422426(1978), DOI: 10.1002/pen.760180515Search in Google Scholar

Syrjala, S., “A New Approach for the Simulation of Melting in Extruders”, Int. Comm. Heat Mass Transfer, 27, 623634(2000), DOI: 10.1016/S0735-1933(00)00144-5Search in Google Scholar

Tadmor, Z., “Fundamentals of Plasticating Extrusion. I. A Theoretical Model for Melting”, Polym. Eng. Sci., 6, 185190(1966), DOI: 10.1002/pen.760060303Search in Google Scholar

Tadmor, Z., et al., “Melting in Plasticating Extruders – Theory and Experiments”, Polym. Eng. Sci., 7, 198217(1967), DOI: 10.1002/pen.760070313Search in Google Scholar

Tadmor, Z., Klien, I., “The Effect of Design and Operating Conditions on Melting in Plasticating Extruders”, Polym. Eng. Sci., 9, 110(1969), DOI: 10.1002/pen.760090102Search in Google Scholar

Tadmor, Z., Gogos, C. G.: Principles of Polymer Processing, John Wiley & Sons, New Jersey(2006)Search in Google Scholar

Vermeulen, J. R., et al., “The Melting of a Bed of Polymer Granules on a Hot Moving Surface”, Chem. Eng. Sci., 26, 14451455(1971a), DOI: 10.1016/0009-2509(71)80064-7Search in Google Scholar

Vermeulen, J. R., et al., “The Melting of a Crystalline Polymer in a Screw Extruder”, Chem. Eng. Sci., 26, 14571465(1971b), DOI: 10.1016/0009-2509(71)80065-9Search in Google Scholar

Viriyayuthakorn, M., et al., “Three Dimensional Model for Plasticating Extrusion Screw Design”, SPE ANTEC Tech. Papers, 8184(1984)Search in Google Scholar

Received: 2010-09-13
Accepted: 2011-01-09
Published Online: 2013-04-06
Published in Print: 2011-05-01

© 2011, Carl Hanser Verlag, Munich

Downloaded on 31.5.2024 from https://www.degruyter.com/document/doi/10.3139/217.2419/html
Scroll to top button