Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 6, 2013

Investigation into the Differences in the Selective Laser Sintering between Amorphous and Semi-crystalline Polymers

  • C. Yan , Y. Shi and L. Hao

Abstract

Significant different thermal properties between amorphous and semi-crystalline polymers have a great effect on the selection of proper sintering parameters and the resulting properties of the parts made by selective laser sintering (SLS) process. This paper studied the differences in the part bed temperature (Tb), and relative density, tensile strength and dimensional accuracy of the SLS fabricated parts between semi-crystalline and amorphous polymers, by measuring and comparing the laser sintering properties of polystyrene (PS), a typical amorphous polymer, and nylon-12 (PA12), a typical semi-crystalline polymer. The results show that: the part bed temperatures (Tb) of amorphous polymers and semi-crystalline polymers should be kept close to glass transition temperature (Tg) and initial melting temperature (Tim) respectively, which can be measured by differential scanning calorimetry (DSC), and this rule combined with trial and error experiments can determine Tb of a polymer in the SLS process; the amorphous polymer SLS parts have very low relative densities and much lower tensile strengths than the strengths of their fully dense forms, while the semi-crystalline polymer SLS parts have higher relative densities and their tensile strengths are close to the strengths of their fully dense forms; the dimensional accuracy of the SLS parts of amorphous polymers is higher than that of semi-crystalline polymer SLS parts at the same processing parameters. The obtained results will be helpful for the development of new SLS materials and the setting of processing parameters.


Mail address: Chunze Yan, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, Devon, Great Britain. E-mail:

References

Beaman, J. J.et al.: Solid Freeform Fabrication: A New Direction in Manufacturing, Kluwer Academic Publishers, Boston (1997)10.1007/978-1-4615-6327-3Search in Google Scholar

Caulfield, B., et al., “Dependence of Mechanical Properties of Polyamide Components on Build Parameters in the SLS Process”, Journal of Materials Processing Technology, 182, 477488(2007), DOI: 10.1016/j.jmatprotec.2006.09.007Search in Google Scholar

Childs, T. H. C., et al., “Selective Laser Sintering of an Amorphous Polymer-Simulations and Experiments”, Proceedings of the Institution of Mechanical Engineers Part B: J. Engineering Manufacturing, 213, 333349(1999)10.1243/0954405991516822Search in Google Scholar

Chung, H., Das, S., “Processing and Properties of Glass Bead Particulate-filled Functionally Graded Nylon-11 Composites Produced by Selective Laser Sintering”, Mat. Sci. Eng. A-Struct., 437, 226234(2006)10.1016/j.msea.2006.07.112Search in Google Scholar

Chung, H., Das, S., “Functionally Graded Nylon-11/Silica Nanocomposites Produced by Selective Laser Sintering”, Mat. Sci. Eng. A-Struct., 487, 251257(2008)10.1016/j.msea.2007.10.082Search in Google Scholar

Deckard, C. R.Part Generation by Layerwise Selective Sintering”, MS Thesis, University of Texas, Austin, TX (1986)Search in Google Scholar

Fan, K. M., et al., “Movement of Powder Bed Material during the Selective Laser Sintering of Bisphenol-A Polycarbonate”, Rapid Prototyping Journal, 11, 188198(2005), DOI: 10.1108/13552540510612884Search in Google Scholar

Fiedler, L., et al., “Evaluation of Polypropylene Powder Grades in Consideration of Laser Sintering Processability”, Int. J. Plast. Technol., 3, 114(2007)Search in Google Scholar

Frenkel, J. J., “Viscous Flow of Crystalline Bodies under the Action of Surface Tension”, J. Phys. (USSR), 9, 385396(1945)Search in Google Scholar

Gibson, I., Shi, D. P., “Material Properties and Fabrication Parameters in Selective Laser Sintering Process”, Rapid Prototyping Journal, 3, 129136(1997), DOI: 10.1108/13552549710191836Search in Google Scholar

Gill, T. J., Hon, K. K. B., “Experimental Investigation into the Selective Laser Sintering of Silicon Carbide Polyamide Composites”, P. I. Mech. Eng. B-J. Eng., 218, 12491256(2004)10.1243/0954405042323487Search in Google Scholar

Ho, H. C. H., et al., “Effects of Energy Density on Morphology and Properties of Selective Laser Sintered Polycarbonate”, J. Mater. Process. Technol., 89–90, 204210(1999), DOI: 10.1016/S0924-0136(99)00007-2Search in Google Scholar

Ho, H. C. H., et al., “Effects of Graphite Powder on the Laser Sintering Behaviour of Polycarbonate”, Rapid Prototyping Journal, 8, 233242(2002), DOI: 10.1108/13552540210441148Search in Google Scholar

Ho, H. C. H., et al., “Morphology and Properties of Selective Laser Sintered Bisphenol A Polycarbonate”, Ind. Eng. Chem. Res., 42, 18501862(2003), DOI: 10.1021/ie0206352Search in Google Scholar

Hao, L., et al., “Selective Laser Sintering of Hydroxyapatite Reinforced Polyethylene Composites for Bioactive Implants and Tissue Scaffold Development”, Proceedings of the Institution of Mechanical Engineers Part H: J. Engineering in Medicine, 220, 521531(2006), DOI: 10.1243/09544119JEIM67Search in Google Scholar PubMed

Kim, J., Creasy, T. S., “Selective Laser Sintering Characteristics of Nylon 6/clay-reinforced Nanocomposite”, Polym. Test., 23, 629636(2004)., DOI: 10.1016/j.polymertesting.2004.01.014Search in Google Scholar

Kruth, J. P., et al., “Lasers and Materials in Selective Laser Sintering”, Rapid Prototyping Journal, 23, 357371(2003)Search in Google Scholar

Kumar, S., “Selective Laser Sintering: A Qualitative and Objective Approach”, JOM-Journal of the Minerals Metals & Materials Society, 55, 4347(2003)10.1007/s11837-003-0175-ySearch in Google Scholar

Mazzoli, A., Met al., “Characterization of an Aluminum-filled Polyamide Powder for Applications in Selective Laser Sintering”, Mater. Des., 28, 9931000(2007), DOI: 10.1016/j.matdes.2005.11.021Search in Google Scholar

Nelson, J. C., Selective Laser Sintering: A Definition of the Process and an Empirical Sintering Model. Ph.D. Thesis, University of Texas at Austin, Austin (1993)Search in Google Scholar

Nelson, J. C., et al., “Model of the Selective Laser Sintering of Bisphenol-A Polycarbonate”, Ind. Eng. Chem. Res., 32, 23052317(1993), DOI: 10.1021/ie00022a014Search in Google Scholar

Pham, D. T., et al., “Selective Laser Sintering: Applications and Technological Capabilities”, Proceedings of the Institution of Mechanical Engineers Part B: J. Engineering Manufacturing, 213, 435449(1999)10.1243/0954405991516912Search in Google Scholar

Savalani, M. M., et al., “Evaluation of CO2 and Nd:YAG Lasers for the selective Laser Sintering of HAPEX®”, Proceedings of the Institution of Mechanical Engineers Part B: J. Engineering Manufacture, 220, 171182(2006)10.1243/095440505X32986Search in Google Scholar

Shi, Y. S., et al., “Development of a Polymer Alloy Of Polystyrene (PS) and Polyamide (PA) for Building Functional Part Based on Selective Laser Sintering (SLS)”, Proc. Inst. Mech. Eng. Part L J. Mat. Des. Appl., 218, 299306(2004)10.1243/0954409043125905Search in Google Scholar

Shi, Y. S., et al., “Experimental investigation into the Selective Laser Sintering of High-impact Polystyrene”, J. Appl. Polym. Sci., 108, 535540(2008), DOI: 10.1002/app.27686Search in Google Scholar

Shi, Y. S., et al., “Study of the Selective Laser Sintering of Polycarbonate and Postprocess for Parts Reinforcement”, Proc. Inst. Mech. Eng. Part. L J. Mat. Des. Appl., 221, 3742(2007)10.1243/09544100JAERO100Search in Google Scholar

Schmidt, M., et al., “Selective Laser Sintering of PEEK”, CIRP Annals – Manufacturing Technology, 56, 205208(2007)10.1016/j.cirp.2007.05.097Search in Google Scholar

Subramanian, K., et al., “Selective Laser Sintering of Alumina with Polymer Binders”, Rapid Prototyping Journal, 1, 2435(2005), DOI: 10.1108/13552549510086844Search in Google Scholar

Tan, K. H., et al., “Scaffold Development Using Selective Laser Sintering of Polyetheretherketone-hydroxyapatite Biocomposite Blends”, Biomaterials, 24, 31153123(2003), DOI: 10.1016/S0142-9612(03)00131-5Search in Google Scholar

Tan, K. H., et al., “Selective Laser Sintering of Biocompatible Polymers For Applications In Tissue Engineering”, Bio-medical Materials and Engineering, 15, 113124(2005), DOI: PMid:15623935Search in Google Scholar

Tontowi, A. E., Childs, T. H. C., “Density Prediction of Crystalline Polymer Sintered Parts at Various Powder Bed Temperatures”, Rapid Prototyping Journal, 7, 180184(2001), DOI: 10.1108/13552540110395637Search in Google Scholar

Wagner, T., et al., “Laser Sintering of High Temperature Resistant Polymers with Carbon Black Additives”, Int. Polym. Proc., 4, 395401(2004)Search in Google Scholar

Wang, Y., Study on the Polymer Materials of Selective Laser Sintering and the Properties of Sintered Parts, Ph.D. Thesis, Huazhong University of Science and Technology, Wuhan (2005)Search in Google Scholar

Wang, Y., et al., “Selective Laser Sintering of Polyamide-rectorite Composite”, P. I. Mech. Eng. L-J. Mat., 219, 1115(2005)Search in Google Scholar

Yan, C. Z., et al., “A Nanosilica/Nylon-12 Composite Powder for Selective Laser Sintering”, J. Reinf. Plast. Compos., 28, 28892902(2009a), DOI: 10.1177/0731684408094062Search in Google Scholar

Yan, C. Z., et al., “Preparation and Selective Laser Sintering of Nylon-12 Coated Aluminum Powders”, J. Compos. Mater., 43, 18351851(2009b), DOI: 10.1177/0021998309340932Search in Google Scholar

Yan, C. Z., et al., “Investigation into the Selective Laser Sintering of Styrene-acrylonitrile Copolymer and Postprocessing”, Int. J. Adv. Manuf. Technol., 51, 973982(2010), DOI: 10.1007/s00170-010-2681-8Search in Google Scholar

Yang, J. S., et al., “Selective Laser Sintering of HIPS and Investment Casting Technology”, J. Mater. Process. Technol., 209, 19011908(2009), DOI: 10.1016/j.jmatprotec.2008.04.056Search in Google Scholar

Zheng, H. Z., et al., “Effect of Core–shell Composite Particles on the Sintering Behavior and Properties of Nano-Al2O3/Polystyrene Composite Prepared by SLS”. Mater. Lett., 60, 12191223(2006), DOI: 10.1016/j.matlet.2005.11.003Search in Google Scholar

Zarringhalam, H., et al., “Effects of Processing on Microstructure and Properties of SLS Nylon 12”, Mat. Sci. Eng. A-Struct., 435–436, 172180(2006)10.1016/j.msea.2006.07.084Search in Google Scholar

Received: 2010-11-22
Accepted: 2011-03-03
Published Online: 2013-04-06
Published in Print: 2011-09-01

© 2011, Carl Hanser Verlag, Munich

Downloaded on 6.6.2024 from https://www.degruyter.com/document/doi/10.3139/217.2452/html
Scroll to top button