Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 6, 2020

Heat Treatment Optimisation of Supersolidus Sintered Steel Compounds

Optimierung der Wärmebehandlung von supersolidus gesinterten Schichtverbunden
  • P. K. Farayibi , M. Blüm and S. Weber

Abstract

The high demands on wear resistant tools have led to the development of wear resistant claddings on a substrate, which can be a low alloyed steel with higher ductility than the cladding to improve the resistance of the tool against fracture. In this study, the post heat treatment of sinter-cladded X245VCrMo9-4 steel coating on X120Mn12 steel substrate was investigated, as it is expected that the substrate remained austenitic while the coating possessed a tough martensitic matrix with uniform dispersion of carbide precipitates. Samples were prepared by sintering at 1250 °C in a vacuum furnace under a nitrogen atmosphere at 80 kPa and a heating rate of 10 K/min, and was allowed to cool in the furnace after a dwell of 30 min at sintering temperature. These samples were subjected to heat treatment by austenitisation, oil quenching and tempering. The effect of heat treatment procedures deployed on the samples was examined using optical microscopy, scanning electron microscopy, X-ray diffraction and hardness. Experimental results were supported by computational thermodynamic calculations. The results indicated that the optimised heat treatment, through which the hardness of the steel coating is significantly enhanced while the substrate microstructure remained austenitic, is by austenitising at 950 °C, quenching and low temperature tempering at 150 °C. Quenching temperature was significant to the hardness of the steel coating, as quenching from higher temperature led to a lower hardness of the matrix when compared to quenching at lower austenitisation temperature owing to a high fraction of retained austenite.

Kurzfassung

Die hohen Anforderungen an verschleißfeste Werkzeuge haben zur Entwicklung von verschleißbeständigen Beschichtungen auf einem duktilen Substrat geführt. Bei diesem Substrat kann es sich um einen niedrig legierten Stahl handeln, der eine höhere Duktilität als die Beschichtung aufweist, um die Bruchfestigkeit des Werkzeugs zu verbessern. In dieser Studie wurde die Wärmebehandlung eines Sinterverbundes mit einer Beschichtung aus X245VCrMo9-4 auf einem X120Mn12-Stahlsubstrat untersucht. Es ist beabsichtigt, dass nach der Wärmebehandlung das Substrat austenitisch bleibt, während die Beschichtung eine zähe martensitische Matrix mit gleichmäßiger Dispersion von Karbidausscheidungen aufweist. Die Proben wurden durch Sintern bei 1250 °C in einem Vakuumofen unter einer Stickstoffatmosphäre bei 80 kPa und einer Heizrate von 10 K/min hergestellt und nach einer Verweilzeit von 30 min bei Sintertemperatur im Ofen abgekühlt. Diese Proben wurden einer Wärmebehandlung durch Austenitisierung, Ölabschreckung und Anlassen unterzogen. Die Auswirkungen der Wärmebehandlungen, die auf die Proben angewendet wurden, wurden unter Verwendung von Lichtmikroskopie, Rasterelektronenmikroskopie, Röntgenbeugung und Härte untersucht. Die experimentellen Ergebnisse wurden durch rechnergestützte thermodynamische Berechnungen unterstützt. Die Ergebnisse zeigten, dass die optimierte Wärmebehandlung durch Austenitisieren bei 950 °C, Abschrecken und Anlassen bei einer niedrigen Temperatur von 150 °C erfolgt. Hierdurch konnte die Härte der Stahlbeschichtung signifikant gesteigert werden, während das Gefüge des Substrats austenitisch bleibt. Die Wahl der Abschrecktemperatur war ausschlaggebend für die resultierende Härte der Stahlbeschichtung, da das Abschrecken bei höherer Temperatur aufgrund eines hohen Anteils an Restaustenit zu einer geringeren Härte der Matrix im Vergleich zum Abschrecken bei niedrigerer Austenitisierungstemperatur führte.


3 (Corresponding author/Kontakt)

References

1. Silva, P. A.; Weber, S.; Inden, G.; Pyzalla, A. R.: Influence of hard particle addition and chemical interdiffusion on the properties of hot extruded tool steel compounds. Mater. Sci. Eng.A 516 (2009) 1–2, pp. 193200, 10.1016/j.msea.2009.03.048Search in Google Scholar

2. Hill, H.; Weber, S.; Huth, S.; Niederhofer, P.; Theisen, W.: The impact of processing on microstructure, single-phase properties and wear resistance of MMCs. Wear271 (2011) 9–10, pp. 18951902, 10.1016/j.wear.2010.11.031Search in Google Scholar

3. Weber, S.; Theisen, W.; Castro, F.; Pyzalla, A.: Influence of gas atmosphere and hard particle addition on the sintering behavior of high alloyed PM cold work tool steels. Mater. Sci. Eng.A 515 (2009) 1–2, pp. 175182, 10.1016/j.msea.2009.02.056Search in Google Scholar

4. Hill, H.; Weber, S.; Siebert, S.; Huth, S.; Theisen, W.: Comprehensive Investigations of the Supersolidus Liquid-Phase Sintering of Two Plastic Mold Steels. Metall. Mater. Trans.A 41 (2010) 3, pp. 686695, 10.1007/s11661-009-0148-zSearch in Google Scholar

5. German, R. M.: A Quantitative Theory for Supersolidus Liquid Phase Sintering. Powder Metallurgy34 (1991) 2, pp. 101107, 10.1179/pom.1991.34.2.101Search in Google Scholar

6. Tandon, R.; German, R. M.: Particle fragmentation during supersolidus sintering. Metal Powder Report52 (1997) 7–8, p. 39, 10.1016/S0026-0657(97)80180-4Search in Google Scholar

7. Liu, J.; Lal, A.; German, R. M.: Densification and Shape Retention in Supersolidus Liquid Phase Sintering. Acta Materialia47 (1999) 18, pp. 46154626, 10.1016/S1359-6454(99)00320-1Search in Google Scholar

8. Rottger, A.; Weber, S.; Theisen, W.: Supersolidus liquid-phase sintering of ultrahigh-boron high-carbon steels for wear-protection applications. Mater. Sci. Eng.A 532 (2012), pp. 511521, 10.1016/j.msea.2011.10.118Search in Google Scholar

9. Blüm, M.; Hill, H.; Moll, H.; Weber, S.; Theisen, W.: SintClad: A new approach for the production of wear-resistant tools. J. Mater. Eng. Perform.21 (2012) 5, pp. 756763, 10.1007/s11665-012-0199-ySearch in Google Scholar

10. Blüm, M., Theisen, W., Weber, S.: Experimental and numerical investigations on interdiffusion profiles in compounds produced by sinter-cladding. Metall. Mater. Trans.A 49 (2018) 10, pp. 49915000, 10.1007/s11661-018-4750-9.Search in Google Scholar

11. Farayibi, P. K.; Blüm, M.; Theisen, W.; Weber, S.: Development of multilayer sinter cladding of cold work tool steel on Hadfield steel plates for wear-resistant applications. J. Mater. Eng. Perform.28 (2019) 3, pp. 18331847, 10.1007/s11665-019-03942-2.Search in Google Scholar

12. Olawale, J. O.; Ibitoye, S. A.; Shittu, M. D.: Workhardening behaviour and microstructural analysis of failed austenitic manganese steel crusher jaws. Mater. Res.16 (2013) 6, pp. 12741281, 10.1590/S1516-14392013005000144Search in Google Scholar

13. Kulmburg, A.: The microstructure of Tool Steels – An overview for the practice – Part 1 – Classification, Systematics and Heat treatment of Tool Steels. Praktische Metallographie35 (1998) 4, pp. 180202Search in Google Scholar

14. Kulmburg, A: The microstructure of Tool Steels – An overview for the practice – Part 2 – Particular microstructural features of the individual groups of Steels. Praktische Metallographie35 (1998) 5, pp. 267279Search in Google Scholar

15. Karagöz, S.; Andrén, H.: Seconardy Hardening in High Speed Steels. Zeitschr. Metallk.83 (1992) 6, pp. 386394Search in Google Scholar

16. Blüm, M.; Conrads, J.; Weber, S.; Theisen, W.: Influence of solution nitriding of Supersolidus-sintered cold work tool steels on their hardenability. HTM J. Heat Treatm. Mat.69 (2014) 5, pp. 273281, 10.3139/105.110234Search in Google Scholar

17. Theisen, W.: HIP Cladding of Tools – The Use of Tool Steels: Experience and Research. Proc. of the 6th International Tooling Conference 2, 10–13.09. 02, Karlstad, Sweden, J.Bergström (ed.), Karlstad University, 2002, pp. 797808Search in Google Scholar

18. Clare, A. T.; Oyelola, O.; Abioye, T. E.; Farayibi, P. K.: Laser cladding of rail steel with Co-Cr. Surf. Eng.29 (2013) 10, pp. 731736, 10.1179/1743294412Y.0000000075Search in Google Scholar

19. Prucha, V.; Jansa, Z.; Simecek, J.; Zdansky, O.; Kriz, A.: Characterisation of microstructure of Hadfield Steel. Solid State Phenomena270 (2017), pp. 265270, 10.4028/www.scientific.net/SSP.270.265Search in Google Scholar

20. Srivastava, A. K.; Das, K.: Microstructural characterisation of Hadfield austenitic manganese steel. Journal of Materials Science43 (2008) 16, pp. 56545658, 10.1007/s10853-008-2759-ySearch in Google Scholar

21. Bhadeshia, H.; Honeycombe, R.: Iron-Carbon Equilibrium and Plain Carbon Steels. In: Steels: Microstructure and Properties, 3rd edition, Butterworth Heinemann, Oxford, GB, 2011, pp. 59100, 10.1016/B978-0-08-100270-4.00003-2Search in Google Scholar

22. Yanushkevich, Z. C.; Molodov, D. A.; Belyakov, A. N.; Kaibyshev, R. O.: Recrystallization kinetics of an austenitic high-manganese steel subjected to severe plastic deformation. Russian Metallurgy9 (2016), pp. 812819, 10.1134/s0036029516090184Search in Google Scholar

23. Imai, Y.; Saito, T.: Carbide precipitation by Heating High-Manganese Steel after Solution Treatment. Science reports of the Research Institutes, Tohoku University, Ser. A, Physics, Chemistry and Metallurgy14 (1962), pp. 92103, open accessSearch in Google Scholar

24. Havel, D.: Austenitic Manganese Steel – A complete overview, 2017, pp. 119, open accessSearch in Google Scholar

25. Huth, S.: Metallic materials for tribocorrosion systems. Tribocorrosion of passive metals and coatings, D.Landolt, S.Mischler (eds.), Woodhead Publishing, Cawston, UK, 2011, pp. 265295, 10.1533/9780857093738.2.265Search in Google Scholar

26. Smallman, R. E.; Ngan, A. H. W.: Steel Transformations. Modern Physical Metallurgy8th ed., Butterworth Heinemann, Oxford, GB, 2014, pp. 473498, 10.1016/B978-0-08-098204-5.00012-2Search in Google Scholar

27. Krauss, G.: Deformation and Fracture of Martensite before and after Tempering. Reference Module in Materials Science and Materials Engineering (2016), pp. 15, 10.1016/B978-0-12-803581-8.02880-0Search in Google Scholar

28. de Andres, C. G.; Caballero, F. G.; Capdevila, C.; Alvarez, L. F.: Application of dilatometric analysis to the study of solid-solid phase transformations in steels. Materials Characterization48 (2002) 1, pp. 101111, 10.1016/S1044-5803(02)00259-0Search in Google Scholar

29. Martin, M.; Raposo, M.; Prat, O.; Giordana, M. F.; Malarria, J.: Pearlite development in commercial Hadfield Steel by means of isothermal reactions. Metallography, Microstructure, and Analysis6 (2017) 6, pp. 591597, 10.1007/s13632-017-0391-4Search in Google Scholar

30. Ishida, K.: Calculation of the effect of alloying elements on the Ms temperature in steels. Journal of Alloys and Compounds220 (1995) 1–2, pp. 126131, 10.1016/0925-8388(94)06002-9Search in Google Scholar

Published Online: 2020-02-06
Published in Print: 2020-02-13

© 2020, Carl Hanser Verlag, München

Downloaded on 13.5.2024 from https://www.degruyter.com/document/doi/10.3139/105.110400/html
Scroll to top button