Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 26, 2013

Hot cracking in the HAZ of laser-drilled turbine blades made from René 80

Heißrissbildung in der Wärmeeinflusszone von Laser-Bohrungen in Turbinenschaufeln aus René 80
  • Andreas Neidel , Susanne Riesenbeck , Thomas Ullrich , Jörg Völker and Chunming Yao
From the journal Materials Testing

Abstract

Advanced film cooling technologies for hot gas path components in gas turbine engines with still constantly increasing inlet temperatures require special manufacturing processes. Today, laser radiation is the preferred means of drilling a large number of small-diameter cooling holes in turbine parts made of nickel-base superalloys. Most of these materials, however, exhibit a relatively high susceptibility to hot cracking in the heat affected zone (HAZ) adjacent to the recast layer. Comprehensive metallographical examinations have been performed to optimise laser drilling parameter settings to minimize hot cracks. In the case of René 80, there seems to be a pronounced microstructural influence on hot cracking sensitivity, i.e. identical laser parameters may produce quite different crack lengths, dependent upon local microstructure in the immediate vicinity of the drilled hole. Grain size, grain boundary morphology and orientation, and primary carbide distribution apparently have a significant influence. These interdependencies should be taken into account when acceptable crack lengths are specified. As far as conventionally investment cast components are concerned, influencing local microstructural features with economically viable effort may be unrealistic.

Kurzfassung

Moderne Filmkühltechnologien für Heißgasteile von Gasturbinen mit nach wie vor steigenden Eintrittstemperaturen erfordern spezialisierte Fertigungsverfahren. Inzwischen ist der Laser das bevorzugte Werkzeug zum Herstellen einer großen Anzahl kleiner Filmkühlbohrungen in Turbinenteilen aus Nickelbasis-Superlegierungen. Die meisten dieser Werkstoffe sind allerdings in der sich an die umgeschmolzene Schicht anschließenden Wärmeeinflußzone recht heißrißempfindlich. Umfangreiche metallographische Untersuchungen, die zur Parameteroptimierung durchgeführt wurden, zeigten für den Werkstoff René 80 einen ausgeprägten Gefügeeinfluß auf die Heißrißempfindlichkeit, d.h. gleiche Laserparameter können je nach lokaler Gefügeausbildung in unmittelbarer Bohrungsumgebung zu unterschiedlichen Heißrißlängen führen. Korngröße, Korngrenzenform und -lage sowie die Ausbildung der Primärcarbide scheinen eine wesentliche Rolle zu spielen. Diese Zusammenhänge sollten bei der Festlegung zulässiger Heißrißlängen berücksichtigt werden, da eine Einflußnahme auf die lokalen Gefügeparameter bei konventionellen Feingußprozessen mit wirtschaftlich vertretbarem Aufwand nicht realistisch erscheint.


Dr.-Ing. Andreas Neidel was born in 1961 and studied mechanical engineering at IH Berlin. He got his PhD in 1991 and joined Siemens Power Generation in 1992. He has been manager of the materials testing laboratory at the Berlin Gas Turbine Plant since 1997.

Susanne Riesenbeck and Thomas Ullrich are metallographers in the materials testing laboratory.

Jörg Völker studied aircraft technology and material sciences at TU Berlin and was, for a long-time, manager of material-related quality management functions in the Siemens gas turbine plant.

Dr.-Ing. Chunming Yao was born in 1961. He studied materials science and engineering at the Northeastern University in Shenyang, China and at the TU Berlin. He received his doctorate from the TU Berlin in 1991. After working several years at the TU Berlin and SMS Demag AG, respectively, he joined Siemens Power Generation in 2001.


References

1 Neidel, A.; Riesenbeck, S.; Ullrich, T.; Völker, J.; Yao, C.: Materialographic Characterization of Modern Multilayer Coating Systems Used for Hot Gas Components in Large Gas Turbines for Stationary Power Generation, Structure 2/2004Search in Google Scholar

2 Lechner, C.; Seume, J. (editors): Stationäre Gasturbinen. Springer-Verlag Berlin, Heidelberg 200310.1007/978-3-662-10016-5Search in Google Scholar

3 Neidel, A.; Riesenbeck, S.; Ullrich, T.; Völker, J.: Failure of a Dampening Pin. Materialprüfung46 (2004) 4, pp. 152157Search in Google Scholar

4 Czech, N.; Schmitz, F.; Stamm, W.: Fortschrittliche Schutzschichten für Gasturbinenschaufeln. VGB Kraftwerkstechnik77 (1997) 3Search in Google Scholar

5 Willach, J.; Horn, A.; Kreutz, E.W.: Drilling of Cooling Holes and Shaping of Blow-out Facilities in Turbine Blades by Laser Radiation. In: Materials for Advanced Power Engineering 2002, Proceedings of the 7th Liège Conference, Part IISearch in Google Scholar

6 Bürgel, R.: Handbuch Hochtemperatur-Werkstofftechnik – Grundlagen, Werkstoffbeanspruchung, Hochtemperaturlegierungen. Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig / Wiesbaden, 199810.1007/978-3-322-99904-7_6Search in Google Scholar

7 Sims, C. T.; Stoloff, N. S.; Hagel, W.C.: Superalloys II. John Wiley & Sons, New York, 1987Search in Google Scholar

8 Donachie, M. J.; Donachie, S. J.: Superalloys: A Technical Guide. ASM International, Materials Park, OH, 2nd EditionSearch in Google Scholar

9 Ezugwu, E. O.; Wang, Z. M.; Machado, A. R.: The Machinability of Nickel-based Alloys: A Review. Journal of Materials Processing Technology86 (1999), pp. 116Search in Google Scholar

10 Choudhury, I. A.; El-Baradie, M. A.: Machinability of Nickel-base Super Alloys: A General Review. Journal of Materials Processing Technology77 (1998), pp. 278284Search in Google Scholar

11 Bradley, E. F.: Superalloys – A Technical Guide. ASM International, Metals Park, OH, 1988Search in Google Scholar

12 Domas, P. A.; Antolovich, S.: A mechanically based model for high temperature notched LCF of René 80. Engineering Fracture Mechanics, 21 (1985), pp. 203214Search in Google Scholar

13 Nissley, N. E.; Lippold, J. C.: Development of the Strain-to-fracture Test. Welding Journal, December (2003), pp. 355364Search in Google Scholar

14 Collins, M. G.; Ramirez, A. J.; Lippold, J. C.: An Investigation of Ductility-Dip Cracking in Nickel-Based Weld Metals – Part III. Welding Journal February (2004), pp. 3949Search in Google Scholar

15 Proceedings of the 1st International Workshop on Hot Cracking Phenomena in Welds. Federal Institute of Materials Research and Testing (BAM), Berlin, Germany 2004 (to be published)Search in Google Scholar

16 Schuster, J.: Heißrisse in Schweißverbindungen. Entstehung, Nachweis und Vermeidung. DVS-Berichte Band 233. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, Düsseldorf2004Search in Google Scholar

17 Williams, M.: Meeting at Chromalloy New York, October 2002Search in Google Scholar

Published Online: 2013-05-26
Published in Print: 2005-10-01

© 2005, Carl Hanser Verlag, München

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.3139/120.100695/html
Scroll to top button