Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 26, 2013

Deep Penetrating Eddy Currents and Probes

Wirbelströme mit hoher Wirktiefe — Definitionen und Sensoren
  • Gerhard Mook , Olaf Hesse and Valentin Uchanin
From the journal Materials Testing

Abstract

The eddy current skin-effect limits the detection of subsurface defects and the range of thickness measurement. Traditional concepts to estimate the penetration depth basing on plane wave propagation into a conducting halfspace cannot describe the real depth of inspection achievable by state-of-the-art sensors and instruments. The paper presents a more fruitful concept for estimating the noise limited inspection depth. Here, the traditional parameters like frequency, probe dimensions, conductivity and permeability are analysed in combination with all sources of noise and disturbances in eddy current technique. New low frequency eddy current probes of inductive and magneto-resistive type are presented and characterised. These probes combine deep penetration with comparatively small size and good spatial resolution.

Kurzfassung

Der wirbelstromtechnische Nachweis verdeckter Fehler wird durch den Skineffekt begrenzt. Die Standardeindringtiefe als Maß zur Quantifizierung des Skineffektes lässt sich über die Ausbreitung ebener Wellen im halbunendlichen leitfähigen Halbraum theoretisch ermitteln. Sie kann jedoch die erreichbare Prüftiefe moderner Sensoren nicht hinreichend beschreiben. Der Beitrag stellt ein Konzept zur Ermittlung einer rauschbegrenzten Eindringtiefe vor, die die bekannten Einflussgrößen wie Prüffrequenz, Sensordimensionen, elektrische Leitfähigkeit und magnetische Permeabilität des Werkstoffs in Bezug zu Rausch- und anderen Störquellen betrachtet. Neue induktive und magnetoresistive Niederfrequenzsensoren werden vorgestellt und ihr Leistungsvermögen ermittelt. Diese Sensoren kombinieren hohe Prüftiefen mit geringen Baugrößen und guter lateraler Auflösung.


Prof. Dr. Gerhard Mook (*1956) graduated in Automatics and Telematics from the Odessa Polytechnic Institute in 1980. After a postgraduate study in Non-destructive Testing he obtained his doctor degree from the Institute of Materials Engineering and Technology of the Otto-von-Guericke-Universität Magdeburg and habilitated in 1990. Since 1992 he has been responsible for research and education in NDT at this institute. Prof. Mook is engaged in national and international projects focused on electromagnetic methods and the emerging field of Structural Health Monitoring.

Dipl.-Ing. Olaf Hesse was born in 1964 in Nordhausen/Germany. He studied physical metallurgy at the Moscow Institute of Steel and Alloys (Technical University) from 1983 to 1989. From 1985 to 2006 he has been working in the material testing department of IMG gGmbH Nordhausen. He was responsible for several projects on application of highly sensitive magnetic field sensors (AMR, GMR, SQUID) in eddy current testing. Since 2006 he is working in the material testing department of TÜV Thüringen e.V.

Dr. Valentin Uchanin graduated in Electrophysics from Lviv Politechnical Institute, Ukraine in 1971. Since 1971 he has worked in the Physico-Mechanical Institute of Ukrainian Academy of Sciences on projects including eddy current and electrical material and product testing. After postgraduate study in All-Union (now All-Russian) Institute of Aviation Materials (Moscow) he received his doctor degree from Institute of Machinery Technology (Moscow). He is a member of the board of Ukrainian NDT Society as the Chairman of Western branch, a member of editorial board of Journal ‟Nondestructive Testing and Technical Diagnostic” (Kiev), and organizer of the annual NDT conferences LEOTEST.


References

1 Z.Mottl: The quantitative relations between true and standard depth of penetration for air-cored probe coils in eddy current testing. NDT International, 23 (1990) No. 1, pp. 111810.1016/0308-9126(90)91444-XSearch in Google Scholar

2 C. V.Dodd, W. E.Deeds: Analytical solutions to eddy-current probe-coil problems. Journal of Applied Physics, 39 (1968) No. 6, pp. 2829283810.1063/1.1656680Search in Google Scholar

3 G.Wittig; G.Grigulevitsch: Ein Beitrag zu den theoretischen und experimentellen Grundlagen des Impuls-Wirbelstromverfahrens. Materialprüfung20 (1978) Nr. 12, pp. 449454Search in Google Scholar

4 R. A.Smith, D.Edgar, J.Skramastad, J.Buckley: Enhanced transient eddy current detection of deep corrosion, Insight – Non-Destructive Testing and Condition Monitoring46 (2004) No. 2, pp. 889110.1784/insi.46.2.88.55544Search in Google Scholar

5 R.Hohmann: SQUID-System mit Joule-Thompson-Kühlung zur Wirbelstromprüfung von Flugzeugfelgen, Dissertationsschrift, Justus-Liebig-Universitét Gießen, 1999Search in Google Scholar

6 Gabor Vertesy, Antal Gasparics: Fluxset Sensor Analysis. Journal of Electrical Engineering, 53 (2002) pp. 5355Search in Google Scholar

7 M. v.Kreutzbruck, K.Allweins, C.Heiden: Wirbelstromprüfsystem mit integriertem Fluxgate-Magnetometer. DACH-Tagung DGZfP, ÖGfZP, SGZP, Innsbruck, 29.–31.5.2000, BB 73.2, pp. 87188110.1080/002071700405851Search in Google Scholar

8 V.Uchanin, G.Mook, T.Stepinski: The investigation of deep penetrating high resolution EC probes for subsurface flaw detection and sizing. Proceedings of 8th ECNDT, Barcelona. 2002, CDrom, paper 27Search in Google Scholar

9 V.Uchanin: New type multi-differencial eddy current probes for surface and subsurface flaw detection. Zeszyty problemowe Badania nieniszcz_ce. Warszawa, (2001) 6, pp. 201204Search in Google Scholar

10 G.Mook, H.Bauke, V.Uchanin: Wirbelstromprüfung mit hohen Eindringtiefen – Theorie und Praxis. DACH-Tagung der DGZfP, ÖGfZP und SGZP 2000, Innsbruck, BB 73 Band 1, pp. 145154Search in Google Scholar

11 S.Cherepov, D.Gilga, O.Hesse, G.Mook, V.Uchanin, S.Pankratyev: Niederfrequente Wirbelstromprüfung mit hoher Eindringféhigkeit und verbesserter Ortsauflösung – vergleichende Untersuchungen verschiedener Sensorkonfigurationen. Berichtsband des 12. Sommerkurses Werkstofftechnik, Universitét Magdeburg, 4.9.2004, pp. 225246Search in Google Scholar

12 V.Uchanin: Eddy current methods of defect detection close to rivets in multi-layer aircraft structures. In: Technical Diagnostics and Non-Destructive Testing (2006) 2, pp. 312 (in Russian)Search in Google Scholar

13 V.Uchanin: Eddy current method of crack detection from the inner side of wing pressure tanks without seal removal. Proceedings of 5th National Conference for Non-Destructive Testing and Technical Diagnostics, Kiev, 2006, pp. 184187 (in Russian)Search in Google Scholar

14 T.Stepinski: Deep Penetrating Eddy Current for Detection Voids in Copper. Proceedings of 8th ECNDT, Barcelona, 2002, CDrom, paper 74Search in Google Scholar

15 V.Uchanin, G.Lutcenko, A.Nikonenko: Automated Eddy Current System for Flaw Detection and Sizing during In-service Stainless Steel Tube Inspection. Proceedings of 9th ECNDT, Berlin, 2006, CDrom, poster 33Search in Google Scholar

16 V.Uchanin: The investigation of low frequency eddy current probes with super high penetration (THP04). Abstracts of 16th WCNDT, Montreal, August 30-September 3, 2004, p. 145Search in Google Scholar

17 V.Uchanin: Development of eddy current inspection methods: challenges, solutions and outlook. Proceedings of 5th National Conference for Non-Destructive Testing and Technical Diagnostics, Kiev, 2006, pp. 4654 (in Russian)Search in Google Scholar

Published Online: 2013-05-26
Published in Print: 2007-05-01

© 2007, Carl Hanser Verlag, München

Downloaded on 21.5.2024 from https://www.degruyter.com/document/doi/10.3139/120.100810/html
Scroll to top button