Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 26, 2013

Effect of Pin Penetration Depth on the Mechanical Properties of Friction Stir Spot Welded Aluminum and Copper

Auswirkung der Pineindringtiefe auf die mechanischen Eigenschaften von rührreibpunktgeschweißtem Aluminium und Kupfer
  • Uğur Özdemir , Sami Sayer and Çınar Yeni
From the journal Materials Testing

Abstract

The effect of pin penetration depth on the mechanical properties of friction stir spot welded (FSSW) aluminum alloy 1050 and pure copper has been investigated. For a certian tool geometry, constant tool rotation speed and penetration time, the materials have been friction stir spot welded in three different penetration depths, namely 2.8 mm, 4 mm and 5 mm. Tensile shear tests, microhardness measurements and micostructural investigation have been carried out on the welded specimens in order to investigate the effect of penetration depth. 2.8 mm plunge depth has resulted in a weak joint, whereas 4 mm and 5 mm plunge depths offer acceptable tensile shear results. Presence of intermetallic phases had an influence on the tensile shear and hardness values.

Kurzfassung

Für den vorliegenden Beitrag wurden die Auswirkungen der Eindringtiefe des Pins auf die mechanischen Eigenschaften der rührreibpunktgeschweißten (friction stir spot welded – FSSW) Aluminiumlegierung 1050 und reinem Kupfer untersucht. Bei einer bestimmten Werkzeuggeometrie und einer konstanten Werkzeugdrehgeschwindigkeit sowie Eindringzeit wurden die Werkstoffe mit drei verschiedenen Eindringtiefen rührreibpunktgeschweißt, und zwar 2mm, 8mm, 4mm und 5 mm. Mit den geschweißten Proben wurden Scherzugversuche, Mikrohärtemessungen und Gefügeuntersuchungen durchgeführt, um die Effkte der Eindringtiefe zu untersuchen. Eine Eintauchtiefe von 2,8 mm ergab eine schwache Verbindung. Die Eintauchtiefen 4mm bzw. 5 mm bieten akzeptable Ergebnisse in den Scherzugversuchen. Die Anwesenheit von intermetallischen Phasen hatten einen Einfluß auf Scherzugfestigkeit und Härtewerte.


Uğur Özdemir studied Mechanical Engineering at the Mustafa Kemal University, Turkey, in 2001. He has carried out the experimental work of him M. Sc. thesis at GKSS Research Center, Germany, in diffusion bonding of TiAl alloys and earned his M. Sc. from the Mustafa Kemal University, in 2003. He is doing Ph.D in elastic-plastic fracture mechanics of laser welded materials at Dokuz Eylül University, Turkey.

Dr.-Ing. Sami Sayer studied Mechanical Engineering at Ruhr University, Germany and has worked at a white goods company for several years. He obtained his Ph. D. degree at Ege University on Friction Stir Welding of Aluminum alloys. He is specialized in plastics technology and welding methods such as friction stir welding. Dr.-Ing. Sayer is an Associate Professor in Ege University, Turkey. Dr. Çınar Yeni has carried out research in Helmholtz-Zentrum Geesthacht (formerly GKSS Research Center), Germany, where she has participated to European projects on fatigue and fracture assessment of welded joints. She is also specialized in welding methods such as laser beam and friction stir welding.

Dr. Yeni is an Associate Professor in Dokuz Eylul University, Turkey.


References

1 C.Connoly: Friction spot joining in aluminium car bodies, Ind. Robot34 (2007), pp. 172010.1108/01439910710718397Search in Google Scholar

2 R. S.Mishra, M. W.Mahoney: Friction Stir Spot Welding, H.Badarınarayan, F.Hunt, K.Okamoto (Eds.): Friction Stir Welding and Processing, American Soc. Met., USA (2007), pp. 235250Search in Google Scholar

3 D.Mitlin, V.Radmilovic, T.Pan, J.Chen, Z.Feng, M. L.Santella: Structure-properties relations in spot friction welded (also known as friction stir spot welded) 6111 aluminum, Mater. Sci. Eng. A441 (2006), pp. 799610.1016/j.msea.2006.06.126Search in Google Scholar

4 Y.Uematsu, K.Tokaji, Y.Tozaki, T.Kurita, S.Murata: Effect of re-filling probe hole on tensile failure and fatigue behaviour of friction stir spot welded joints in Al-Mg-Si alloy, Int. J. Fatig.30 (2008), pp. 1956196610.1016/j.ijfatigue.2008.01.006Search in Google Scholar

5 P.Su, A.Gerlich, T. H.North, G. J.Bendzsak: Intermixing in dissimilar friction stir spot welds, Metall. Mater. Trans. A, 38 (2007), pp. 58459510.1007/s11661-006-9067-4Search in Google Scholar

6 S.Lathabai, M. J.Painter, G. M. D.Cantin, V.K.Tyagi: Friction spot joining of an extruded Al–Mg–Si alloy, Scripta Mater.55 (2006), pp. 89990210.1016/j.scriptamat.2006.07.046Search in Google Scholar

7 D. A.Wang, S. C.Lee: Fatigue lives of friction stir spot welds in aluminum 6061-T6 sheets, J. Mater. Process. Tech.209 (2009), pp. 36737510.1016/j.jmatprotec.2008.02.008Search in Google Scholar

8 M.Fujımoto, S.Koga, N.Abe, Y. S.Sato, H.Kokawa: Microstructural analysis of the stir zone of Al alloy produced by friction stir spot welding, Sci. Technol. Weld. Joi.13 (2008), pp. 66367010.1179/136217108X347601Search in Google Scholar

9 Y.Tozaki, Y.Uematsu, K.Tokaji: A newly developed tool without probe for friction stir spot welding and its performance, J. Mater. Process Technol.210 (2010), pp. 84485110.1016/j.jmatprotec.2010.01.015Search in Google Scholar

10 F.Sarsılmaz, N.Özdemir, S.Özel: The effect of stirrer shoulder wideness on mechanical properties of friction stir welded AA 6061/ AA 7075 couples, Selçuk Tech.-Online J.7 (2008), pp. 5161Search in Google Scholar

11 Z.Barlas, H.Uzun: Microstructure and Mechanical Properties of Friction Stir Butt Welded Dissimilar Cu/CuZn30 Sheets, J. Mater. Manufac. Eng.30 (2008), pp. 182186Search in Google Scholar

12 A.Gerlich, P.Su, T.North: Peak temperatures and microstructures in aluminum and magnesium alloy friction stir spot welds, Sci. Technol. Weld. Joi.10 (2005), pp. 64765210.1179/174329305X48383Search in Google Scholar

13 A.Abdollah-zadeh, T.Saeid, B.Sazgari: Microstructural and mechanical properties of friction stir welded aluminum/copper lap joints, J. Alloys and Compd.460 (2007), pp. 53553810.1016/j.jallcom.2007.06.009Search in Google Scholar

14 A.Elrefaey, M.Takahashi, K.Ikeuchi, Microstructure of aluminum/copper lap joints by friction stir welding and its performance, J. High Temp. Soc.30 (2004), pp. 286292Search in Google Scholar

15 J.Ouyang, E.Yarrapareddy, R.Kovacevic: Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper, J. Mater. Process Tech.172 (2006), pp. 11012210.1016/j.jmatprotec.2005.09.013Search in Google Scholar

16 Y.Tozakı, Y.Uematsu, K.Tokajı: Effect of processing parameters on static strength of dissimilar friction stir spot welds between different aluminium alloys, Fatig. Fract. Eng. Mater. Struct.30 (2007), pp. 14314810.1111/j.1460-2695.2006.01096.xSearch in Google Scholar

17 C.Genevoıs, M.Girard, B.Huneau, X.Sauvage, G.Racıneux: Interfacial Reaction during Friction Stir Welding of Al and Cu, J. Metall. Mater. Trans. A, DOI: 10.1007/s11661-011-0660-9 (2011)10.1007/s11661-011-0660-9Search in Google Scholar

18 İ.Ay, S.Çelik, İ.Çelik: Comparison of properties of friction and diffusion welded joints made between the pure aluminium and copper bars, BAU J. Inst. Nat. Sci.2 (2000), pp. 88102Search in Google Scholar

19 I.Kebbache, M. Y.Debili: Separation of aluminum and copper by intermetallic compounds after HF induction fusion, J. Miner. Met. Mater. Soc.62 (2010), pp. 525410.1007/s11837-010-0078-7Search in Google Scholar

Published Online: 2013-05-26
Published in Print: 2012-04-01

© 2012, Carl Hanser Verlag, München

Downloaded on 3.5.2024 from https://www.degruyter.com/document/doi/10.3139/120.110322/html
Scroll to top button