Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 22, 2013

The Effect of Aging and Sliding Speed on Wear Behaviour of Cu-Cr-Zr Alloy

Die Effekte der Alterung und der Gleitgeschwindigkeit auf das Verschleißverhalten einer Cu-Cr-Zr Legierung
  • Dursun Özyürek , Ibrahim Ciftci and Tansel Tuncay
From the journal Materials Testing

Abstract

In this study, the sliding wear behaviour of non-aged and aged Cu-Cr-Zr alloy specimens were investigated. The specimens were aged for 2 h at the temperatures of 450 °C and 475 °C. Prior to the wear tests, microstructural examinations and hardness measurements were performed on all Cu-Cr-Zr alloy specimens. The wear tests were performed on a pin-on disk type wear apparatus at the sliding speeds of 0.5 ms−1, 1.0 ms−1 and 1.5 ms−1 as well as under 40 N applied load. After the wear tests, the worn surfaces of all samples were analyzed by SEM and energy dispersive X-ray spectroscopy (EDS). The experimental results indicated that aging heat treatment led to increase in the hardness values of Cu-Cr-Zr alloys and the highest wear loss was observed for non-aged specimens. With increasing sliding speed, the wear loss increased to a maximum value beyond which it decreased.

Abstract

In der diesem Beitrag zugrunde liegenden Studie wurde das Verschleißverhalten von gealterten und unbehandelten Proben einer Cu-Cr-Zr Legierung untersucht. Die Proben wurden hierfür über zwei Stunden bei Temperaturen von 450 °C und 475 °C gealtert. Vor den Verschleißversuchen wurde die Mikrostruktur aller Proben untersucht und ihre Härte gemessen. Die Verschleißversuche wurden mit einer Einrichtung des Stift-Scheibe-Typs bei Gleitgeschwindigkeiten von 0,5 ms−1, 1,0 ms−1 und 1,5 ms−1 sowie mit einer Kraft von 40 N durchgeführt. Nach den Versuchen wurden die verschlissenen Oberflächen mittels REM und energiedispersiver Röntgenspektroskopie (EDX) untersucht. Die experimentellen Ergebnisse zeigen, dass die Alterungswärmebehandlung zu einem Härteanstieg der Cu-Cr-Zr Legierungen führt sowie die größten Verschleißverluste an den unbehandelten Proben beobachtet wurden. Mit zunehmender Gleitgeschwindigkeit nahm der Verschleißverlust bis zu einem Maximum zu, um danach wieder abzufallen.

References

1 H.Fuxiang, L.Chao, G.Shumei: Analysis of phases in a Cu-Cr-Zr alloy, Scripta Mater.48 (2003), pp. 9710210.1016/S1359-6462(02)00353-6Search in Google Scholar

2 L.Qiang, X.Zhang, Y.Ge, J.Wang, J. Z.Cui: Effect of processing and heat treatment on behaviour of Cu-Cr-Zr alloys to railway contact wire, Metall. Mater. Trans. A, 37A (2006), pp. 32333238Search in Google Scholar

3 Y.Altunpak: Wear behaviour of aged Cu-Be alloy under electrical sliding, Sci. Res. Essays, 5–19, (2010), pp. 29973002Search in Google Scholar

4 H.Nagasawa, K.Kato: Wear mechanism of copper alloy wire sliding against iron-based strip under electric current, Wear216 (1998), pp. 17918310.1016/S0043-1648(97)00162-2Search in Google Scholar

5 J. P.Tu, W. X.Qi, Y. Z.Yang, F.Liu, J. T.Zhang, G. Y.Gan, N. Y.Wang, X. B.Zhang, M. S.Liu: Effect of aging treatment on the electrical sliding wear behaviour of Cu-Cr-Zr alloy, Wear249 (2002), pp. 1021102710.1016/S0043-1648(01)00843-2Search in Google Scholar

6 W. X.Qi, J. P.Tu, F.Liu, Y. Z.Yang, N. Y.Wang, H. M.Lu, X. B.Zhang, G. S.Guo, M. S.Liu: Microstructure and tribological behaviour of a peak aged Cu-Cr-Zr alloy, Mater. Sci. Eng. A343 (2003), pp. 899610.1016/S0921-5093(02)00387-8Search in Google Scholar

7 T.Fujita, S.Nishimura, T.Fujinami, K.Kaneko, Z.Horita, D. J.Smith: Application of equal-channel angular pressing to Cu-Co alloy with ferromagnetic precipidates, Mater. Sci. Eng., A417 (2006), pp. 14915710.1016/j.msea.2005.11.008Search in Google Scholar

8 J. H.Su, H. J.Li, P.Liu, Q. M.Dong, A. J.Li: Aging process optimization for a copper alloy considering hardness and electrical conductivity, Comp. Mater. Sci.38 (2006), No. 4, pp. 69770110.1016/j.commatsci.2006.04.013Search in Google Scholar

9 J. H.Su, Q. M.Dong, P.Liu, H. J.Li, B. X.Kang: Research on aging precipitation in a Cu-Cr-Zr-Mg alloy, Mater. Sci. Eng. A392 (2005), pp. 42242610.1016/j.msea.2004.09.041Search in Google Scholar

10 P.Liu, B. X.Kang, X. G.Cao, J. L.Huang, B.Yen, H. C.Gu: Aging precipitation and recrystallization of rapidly solidified Cu-Cr-Zr-Mg alloy, Mater. Sci. Eng. A265 (1999), pp. 26226710.1016/S0921-5093(98)01149-6Search in Google Scholar

11 P.Scardi, M.Leoni, G.Straffelini, G.De. Giudici: Microstructure of Cu-Be alloy tribooxidative wear debris, Acta Mater.55 (2007), pp. 2531253810.1016/j.actamat.2006.11.046Search in Google Scholar

12 D. A.Rigney: Transfer, mixing and associated chemical and mechanical processes during the sliding of ductile materials, Wear245 (2000), pp. 19Search in Google Scholar

13 P. L.Menezes, Kishore, S. V.Kailas: Study of friction and transfer layer formation in copper-steel tribo system, Role of surface texture and roughness parameter, Tribol. T.52 (2009), No. 5, pp. 611622Search in Google Scholar

14 G.Straffelini, L.Maines, M.Pellizzari, P.Scardi: Dry sliding wear of Cu-Be alloys Wear, 259, (2005), pp. 506511Search in Google Scholar

15 Y.Soydan, S.Koksal, A.Demirer, V.Celik: Sliding friction and wear behaviour of pack-boronized AISI 1050, 4140 and 8620 steels, Tribol. T.51 (2008), No.1, pp. 748110.1080/10402000701739370Search in Google Scholar

16 H.Duzcukoglu, A.Calık, H.Imrek, M. S.Karatas: Examination of pitting and wear in borided, carburized and borocarburized AISI 8620 Gears, Tribol. T.53 (2010), No. 4, pp. 48549010.1080/10402000903457458Search in Google Scholar

Published Online: 2013-08-22
Published in Print: 2013-06-03

© 2013, Carl Hanser Verlag, München

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.3139/120.110457/html
Scroll to top button