Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 28, 2014

Mechanical Performance of Polyamid 66 and Influence of Glass Fiber Content on Moisture Absorption

Mechanisches Verhalten von Polyamid 66 und Feuchtigkeitsabsorption abhängig vom Glasfasergehalt
  • Sami Sayer
From the journal Materials Testing

Abstract

This study investigates the determination of the mechanical performance of polyamid 66 and the influence of moisture and short glass fiber content (15 wt.-% and 30 wt.-%) at six different conditioning times (1, 2, 4, 8, 16, 32 minutes) in 105 °C water vapor. It was determined that as the glass fiber content increases, moisture absorption decreases. While the moisture absorption increases, tensile strength decreases and the percental elongation and toughness increases. It can also be derived that continuation of moisture absorption after 16 minutes is not effective and beneficial. The moisture absorption values observed in this study are equivalent to the amount of moisture that can be absorbed at 50 % relative humidity and 23 °C room temperature in the air for four months.

Kurzfassung

In der diesem Beitrag zugrunde liegenden Studie wurde das mechanische Verhalten von Polyamid 66 unter dem Einfluss von Feuchtigkeit und dem Gehalt an kurzen Glasfasern (15 wt.-% bzw. 30 wt.-%) nach sechs verschiedenen Konditionierungszeiten (1, 2, 4, 8, 16 und 32 Minuten) in 105 °C heißem Wasserdampf untersucht. Es wurde ermittelt, dass mit steigendem Glasfasergehalt die Feuchtigkeitsabsorption abnimmt. Wenn die absorbierte Feuchtigkeit ansteigt, nimmt die Festigkeit ab und die prozentuale Verlängerung sowie die Zähigkeit nehmen zu. Es kann auch abgeleitet werden, dass eine länger als 16 Minuten andauernde Feuchtigkeitsabsorption keine weitere Auswirkung mehr hat und nicht vorteilhaft ist. Die Absorptionswerte der Feuchtigkeit in dieser Studie entsprechen dem Feuchtigkeitsgehalt, der bei 50 % relativer Luftfeuchtigkeit und 23 °C Umgebungstemperatur innerhalb von vier Monaten absorbiert werden kann.


* Correspondence Address, Assoc. Prof. Dr.-Ing. Sami SAYER, Ege University Ege Vocation School, 35100 Bornova, Izmir, Turkey, E-mail:

Sami Sayer was born in 1959. He studied mechanical engineering at Ruhr University in Bochum, Germany and received his doctorate degree in mechanical engineering with dissertation regarding friction stir welding of aluminum alloys from Ege University in Izmir, Turkey. He has worked as product designer and development engineer at a vacuum pump manufacturing firm in Germany, and as a product development manager at a white goods firm in Turkey. Since 2002 he is lecturer at Ege University, Turkey. He is specialized in plastics technology and welding methods such as friction stir welding and hot plate welding.


References

1 Effects of Moisture Cond. Met. on Mech. Prop. of Injection Molded Nylon 6, BASF Corporation, New Jersey, USA (2003)Search in Google Scholar

2 J. L.Thomason: The influence of fiber length, diameter and concentration on the modulus of glass fiber-reinforced polyamide 66, Composites Part A, ed. M.Hyer, Curran Associates: Applied Science and Manufacturing39 (2008), No. 11, pp. 1732173810.1016/j.compositesa.2008.08.001Search in Google Scholar

3 N.Sato, T.Kurauchi, S.Sato, O.Kamigaito: Mechanism of fracture of short glass fiber-reinforced polyamide thermoplastic, J. Mater. Sci.19 (1984), pp. 1145115210.1007/BF01120023Search in Google Scholar

4 A.Hassan, R.Yahya, A. H.Yahaya, A. R. M.Tahir, P. R.Hornsby: Tensile, impact and fiber length properties of injection-molded short and long glass fiber-reinforced polyamide composites, J. Reinforced Plast Composites23 (2004), pp. 96998610.1177/0731684404033960Search in Google Scholar

5 E.Carlson, K.Nelson: Nylon under the hood: History of innovation, Automotive Eng.104 (1996), pp. 8489Search in Google Scholar

6 R. T. D.Prabhakaran, T. L.Andersen, A.,Lystrup, Influence of moisture absorption on properties of fiber-reinforced polyamide 6 composites, Proc. of the 26th Annual Technical Conference of the American Society for Composites 2011 and the 2nd Joint US-Canada Conference on Composites, ed. M. Hyer, Curran Associates, Quebec, Canada (2011), pp. 500510Search in Google Scholar

7 Tensile Properties of Semi-Crystalline Thermoplastics – Performance Comparison under Alternative Testing Standard, Paper Number: 2000-01-1319, BASF Corporation, New Jersey, USASearch in Google Scholar

8 G.Baschek, G.Hartwig, F.Zahradnik: Effect of water absorption in polymers at low and high temperatures, Polymer40 (1999), pp. 3433344110.1016/S0032-3861(98)00560-6Search in Google Scholar

9 M.Kohan: Nylon Plastic Handbook, Hanser/Gardner, New York, USA (1997)Search in Google Scholar

10 T.Osswald, E.Baur, S.Brinkman, K.Oberbach, E.Schmachtenberg: International Plastics Handbook, Carl Hanser Verlag, Munich, Germany (2006)10.3139/9783446407923.fmSearch in Google Scholar

11 J.Song, G. W.Ehrenstein: Einfluss der Wasseraufnahme auf die Eigenschaften von Polyamid, Kunststoffe 80 (1990), pp. 722726Search in Google Scholar

12 R. J.Morgan; J. E.O'Neals: The durability of epoxies, Polym. Plast. Techn. Eng.10 (1978), No. 1, pp. 4911610.1080/03602557808055845Search in Google Scholar

13 Z. D.Xiang, F. R.Jones:  Thermal spike enhanced moisture absorption by polymer matrix, carbon fiber composites, Comp. Sci. Tech.57 (1997), pp. 45146110.1016/S0266-3538(96)00168-6Search in Google Scholar

14 L. S. A.Smith, V.Schmitz: The effect of water on the glass transition temperature of poly(methyl methacrylate), Polymer29 (1988), pp. 1871187810.1016/0032-3861(88)90405-3Search in Google Scholar

15 P. J.Burchill: Effect of absorbed water, temperature and strain rate on the yield strength of two methyl methacrylate-based plastic, J. Mater. Sci.24 (1989), No. 6, pp. 1936194010.1007/BF02385402Search in Google Scholar

16 B.Bundara: Influence of moisture on impact fracture behaviour of polymers as exemplified by polyamid 66, J. G.Williams, A.Pavan (Eds.): Impact and Dynamic Fracture of Polymers, Mech. Eng. Publ., London, UK (1995), pp. 305314Search in Google Scholar

17 D.Valentin, F.Paray, B.Guetta: The hygrothermal behavior of glass fiber-reinforced PA66 composites: A study of the effect of water absorption on their mechanical properties, J. Mater. Sci.22 (1987), pp. 465610.1007/BF01160550Search in Google Scholar

18 M.Akay: Moisture absorption and its influence on the tensile properties of glass fiber-reinforced polyamide 66, Polym. Compos.2 (1994), No. 6, pp. 349354Search in Google Scholar

19 A. B.Strong: Plastics: Materials and Processing, Englewood Cliffs, Prentice Hall, New Jersey, USA (1999)Search in Google Scholar

20 W. D.Callister: Materials Science and Engineering, Wiley, New York, USA (2006)Search in Google Scholar

21 J. L.Broge: Ford's Prototype Electric Ka, Auto. Eng.108 (2000), No. 7, pp. 7075Search in Google Scholar

22 J. A.Brydson: Plastics Materials, Butterworth Heinemann, Guildford, USA (1989)Search in Google Scholar

23 D.Ferreño, I.Carrascal, E.Ruiz, J. A.Casado: Characterization by means of a finite element model of the influence of moisture content on the mechanical and fracture properties of the polyamide 6 reinforced with short glass fiber, Polymer Testing30 (2011), pp. 42042810.1016/j.polymertesting.2011.03.001Search in Google Scholar

24 J.Crank: The Mathematics of Diffusion, Oxford University Press, Oxford, UK (1975)Search in Google Scholar

25 W.Hellerich, G.Harsch, S.Haenle: Werk­stoffführer Kunststoffe, Carl Hanser Verlag, Munich, Germany (1992)Search in Google Scholar

26 CAMPUS® 5.0 data base, BASF-2004-05-24, Ultramid®B3SSearch in Google Scholar

27 Konditionieren von Fertigteilen aus Ultramid: Technische Information, BAYER, (2007)Search in Google Scholar

28 D. P. N.Vlasveld, J.Groenewold, H. E. N.Bersee, S. J.Picken: Moisture absorption in polyamide-6 silicate nanocomposites and its influence on the mechanical properties, Polymer46 (2005), pp. 125671257610.1016/j.polymer.2005.10.096Search in Google Scholar

Published Online: 2014-09-28
Published in Print: 2014-04-01

© 2014, Carl Hanser Verlag, München

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.3139/120.110563/html
Scroll to top button