Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 28, 2014

Microstructure-Oriented Fatigue Assessment of Construction Materials and Joints Using Short-Time Load Increase Procedure*

Mikrostrukturbasierte Bewertung der Ermüdungsfestigkeit von Kon­struktionswerkstoffen und Verbindungen mittels Kurzzeit-Laststeigerungsverfahren
  • Frank Walther
From the journal Materials Testing

Abstract

Stress-strain-hysteresis, change in deformation-induced temperature and change in DC-based electrical resistance measurements are applied for the detailed characterization of structural-mechanical processes in construction materials and joints under multiple-step and single-step fatigue loading. Results concerning the influence of joining technologies on austenitic steel AISI304, carbon-fiber reinforced polymers (CFRP) and beech wood materials, of environmental media on magnesium alloys Mg-4Al-2Ba-2Ca (DieMag422) and Mg-10Gd-1Nd, and of manufacturing processes on titanium alloy Ti-6Al-4V and wood-plastic composites (WPC) are discussed. The load- and cycle-dependent change in microstructure was investigated by light and electron microscopy and correlated with fatigue properties, to reach a preferably precise description of process structure property relationship in a qualitative and quantitative manner. The time-efficient load increase procedure applied for evaluation of joining, environmental and manufacturing influence on fatigue performance is suitable for production-accompanied usage.

Kurzfassung

Zur detaillierten Charakterisierung der unter Ermüdungsbeanspruchung auftretenden strukturmechanischen Prozesse wurden Messungen der Spannungs-Dehnungs-Hysterese, der verformungsinduzierten Temperaturänderung und der elektrischen Widerstandsänderung in mehrstufigen und einstufigen Untersuchungen angewendet. Ergebnisse des Einflusses der Verbindungstechnologie auf austenitischen Stahl X5CrNi18-10, kohlenstofffaserverstärkte Kunststoffe (CFK) und Buchenholzwerkstoffe, des Umgebungsmediums auf die Magnesiumlegierungen Mg-Al4-Ba2-Ca2 (DieMag422) und Mg-Gd10-Nd1 sowie des Herstellungsverfahrens auf die Titanlegierung Ti-Al6-V4 und auf Holz-Kunststoff-Verbundwerkstoffe (WPC) werden hier diskutiert. Die beanspruchungs- und lastspielzahlabhängige Veränderung der Mikrostruktur wurde licht- und elektronenmikroskopisch untersucht und mit den Ermüdungseigenschaften korreliert, um eine möglichst präzise qualitative und quantitative Beschreibung der Prozess-Struktureigenschafts-Beziehung zu erzielen. Das zeiteffiziente Laststeigerungsverfahren ist für den produktionsbegleitenden Einsatz zur Beurteilung von Verbindungstechnologien, Umgebungsmedien und Herstellungsverfahren auf die Ermüdungseigenschaften sehr gut geeignet.


** Correspondence Address, Prof. Dr.-Ing. Frank Walther, Technical University Dortmund, Department of Materials Test Engineering (WPT), Baroper Str. 303, 44227 Dortmund, Germany, E-mail:
*

Extended Version of the Contribution to the National Conference Werkstoffprüfung 2013

Prof. Dr.-Ing. Frank Walther, born in 1970, studied Mechanical Engineering with specialization in materials science and engineering at TU Kaisers­lautern, Germany, from 1992 to 1997 and finished his PhD on the fatigue assessment of highly-loaded ICE wheel steels at Institute of Materials Science and Engineering (WKK) in 2002. From 2002 to 2008 he was group leader of fatigue behaviour at WKK and finished his postdoctoral qualification (habilitation) in materials science and engineering in 2007. After that he joined Schaeffler AG in Herzogenaurach, Germany. Within corporate development he took responsibility for public private partnership concerning public research funding and special projects in materials research. Since December 2010 he has been professor of Materials Test Engineering (WPT) in the Faculty of Mechanical Engineering at TU Dortmund, Germany. His research portfolio includes determination of structure-property-relationships of construction materials and components taking the influence of manufacturing, joining and corrosion processes as well as service loading into account. New measurement and destructive/non-destructive testing techniques are applied for the characterization of fatigue behaviour from LCF to VHCF range under mechanical, thermal, chemical and mixed influences, as well as new physically based approaches for the calculation of damage development and (remaining) fatigue life.


References

1 J. D.Morrow: Cyclic plastic strain energy and fatigue of metals, Internal Friction, Damping, and Cyclic Plasticity, 67th Annual Meeting ASTM, STP 378 (1964), pp. 458710.1520/STP43764SSearch in Google Scholar

2 P.Lukáš, M.Klesnil: Cyclic stress-strain response and fatigue life in metals in low amplitude region, Materials Science and Engineering11 (1973), pp. 34535610.1016/0025-5416(73)90125-0Search in Google Scholar

3 H.Harig, E.Frank: Thermometry – a method of short term fatigue testingWire, 31 (1981), No. 5, pp. 227231Search in Google Scholar

4 K. F.Stärk: Temperaturmessung an schwingend beanspruchten WerkstoffenZeitschrift für Werkstofftechnik, 13 (1982), pp. 33333810.1002/mawe.19820131003Search in Google Scholar

5 G.Meneghetti: Analysis of the fatigue strength of a stainless steel based on the energy dissipationInternational Journal of Fatigue, 29 (2007), pp. 819410.1016/j.ijfatigue.2006.02.043Search in Google Scholar

6 J. H.Constable, C.Sahay: Electrical resistance as an indicator of fatigueIEEE Transaction on Components, Hybrids, and Manufacturing Technology, 15 (1992), No. 6, pp. 1138114510.1109/33.206940Search in Google Scholar

7 M.Kocer, F.Sachslehner, M.Müller, E.Schafler, M. J.Zehetbauer: Measurement of dislocation density by residual electrical resistivityMaterials Science Forum, 210–213 (213), pp. 13314010.4028/www.scientific.net/MSF.210-213.133Search in Google Scholar

8 D. D. L.Chung: Structural health monitoring by electrical resistance measurementSmart Materials and Structures, 10 (2001), pp. 62463610.1088/0964-1726/10/4/305Search in Google Scholar

9 B.Sun, Y.Guo: High-cycle fatigue damage measurement based on electrical resistance change considering variable electrical resistivity and uneven damageInternational Journal of Fatigue, 26 (2004), pp. 45746210.1016/j.ijfatigue.2003.10.004Search in Google Scholar

10 D.Dengel, H.Harig: Vergleich verschiedener Laststeigerungsverfahren zur Abschätzung der Dauerfestigkeit von StahlMaterialprüfung, 22 (1980), No. 3, pp. 120130Search in Google Scholar

11 F.Walther, D.Eifler: Cyclic deformation behaviour of steels and light-metal alloysMaterials Science and Engineering A, 468–470 (470), pp. 25926610.1016/j.msea.2006.06.146Search in Google Scholar

12 F.Walther, D.Eifler: Fatigue life calculation of SAE 1050 and SAE 1065 steel under random loadingInternational Journal of Fatigue, 29 (2007), No. 9–11, pp. 1885–1892 10.1016/j.ijfatigue.2007.01.005Search in Google Scholar

13 F.Walther: Physikalische Messverfahren zur mikrostrukturbasierten Charakterisierung des Ermüdungsverhaltens und zur Lebensdauerberechnung metallischer Werkstoffe, D.Eifler (Ed.): Werkstoffkundliche Berichte, Vol. 19 (2008), pp. 1180Search in Google Scholar

14 M.Manka, L.Wojarski, W.Tillmann, G.Frieling, S.Myslicki, F.Walther: Fatigue behaviour of brazed AISI 304 joints using Au-fillers, Proc. of Loet 2013 – 10th Int. Conf. on Brazing, High Temperature Brazing and Diffusion Bonding, Aachen, DVS-Bericht Vol. 293 (2013), pp. 232236Search in Google Scholar

15 M.Klein, P.Wittke, H.Dieringa, F.Walther: Influence of corrosion on fatigue properties of new creep-resistant magnesium alloy DieMag422, Proc. of the 7th International Conference on Low Cycle Fatigue (2013), pp. 319324Search in Google Scholar

16 P.Wittke, M.Klein, F.Walther: Chemisch-mechanische Charakterisierung der kriechbeständigen bariumhaltigen Mg-Al-Ca-Legierung DieMag422Materials Testing, 56 (2014), No. 1, pp. 162310.3139/120.110519Search in Google Scholar

17 E.Wycisk, C.Emmelmann, S.Siddique, F.Walther: High Cycle Fatigue (HCF) Performance of Ti-6Al-4V Alloy Processed by Selective Laser MeltingAdvanced Materials and Research, 816–817 (817), pp. 13413910.4028/www.scientific.net/AMR.816-817.134Search in Google Scholar

18 S.Myslicki, T.Vallée, F.Walther: Short-term procedure for fatigue assessment of beech wood and adhesively bonded beech-joints, Wood Science and Technology (2014), submitted10.1617/s11527-015-0640-4Search in Google Scholar

19 B.Penning, F.Walther, D.Dumke, B.Künne: Einfluss der Verformungsgeschwindigkeit und des Feuchtegehalts auf das quasistatische Verformungsverhalten technischer VulkanfiberMaterials Testing, 55 (2013), No. 4, pp. 27628410.3139/120.110435Search in Google Scholar

Published Online: 2014-09-28
Published in Print: 2014-07-15

© 2014, Carl Hanser Verlag, München

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.3139/120.110592/html
Scroll to top button