Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 7, 2022

Deformation and damage behavior of lightweight steels at high rate multiaxial loading

Verformungs- und Versagensverhalten von Leichtbaustählen unter multiaxialer Hochgeschwindigkeitsbeanspruchung
  • Silke Klitschke

    Dipl.-Ing. Silke Klitschke, born 1967, studied Chemical Engineering at Universität Karlsruhe (TH), Germany, with Diploma in 1994. She worked as a lecturer at different universities of applied sciences for seven years and from 2002 to 2003, as Applications Engineer at Roell Amsler (Zwick Roell Group). Since 2011, she is working as a scientist at Fraunhofer IWM in Freiburg, Germany, in the group “Crashdynamics” in the field of material characterization under high rate and multiaxial loading.

    EMAIL logo
    and Wolfgang Böhme

    Dr. rer. nat. Wolfgang Böhme, born in 1951, studied Physics at Universität Karlsruhe (TH), Germany, with Diploma in 1977. Since 1978 he is working as a scientist at Fraunhofer IWM in Freiburg, Germany, and finished his PhD at Technische Universität Darmstadt (TU), Germany, in 1985. He established and headed the group “Crashdynamics” and his experience covers the characterization of the behavior of various materials, joints and components under multiaxial loading and high loading rates for crashworthiness analysis as well as high rate fracture mechanics for the assessment of accidentally loaded structures.

From the journal Materials Testing

Abstract

For the characterization of the deformation and damage behavior of the automotive lightweight steels ZStE340 and DP1000, high speed tension tests for various stress triaxialities with shear tensile specimens, smooth tensile specimens and notched specimens and static and dynamic Nakajima tests were performed. The deformation up to failure was recorded using high speed video cameras with high resolution in the necking zone and evaluated with 2D and in part 3D digital image correlation (DIC). The maximal achieved effective strain at the location of failure, determined by video analysis and fractography, was specified as failure strain. The results for various specimen geometries were plotted versus stress triaxiality as determined by FE simulation in order to receive failure diagrams. Overall, both materials show descending failure curves from shear loading up to tensile loading of notched specimens. Up to equibiaxial tension, failure curves are rising again. For uniaxial and equibiaxial tension, with increasing strain rate larger failure strains occured for DP1000, while no significant influence of strain rate on failure strain was observed for ZStE340. However, under shear loading with increasing strain rate, decreasing failure strains occur for both materials. This is probably due to an adiabatic temperature rise in a small localized zone which promotes shear failure. For shear crash tests a temperature rise of more than 200 K was measured by a high speed infrared camera. These results show the necessity of dynamic tests under different stress triaxialities to provide reliable input data for crash simulations and increase the ability to accurately predict failure. Especially shear failure must be investigated very carefully under crash loading, because here failure occurs at smaller failure strains than it would be expected under quasistatic loading.

Abstract

Zur Charakterisierung des Crashverhaltens von den im Automobilbau eingesetzten Leichtbaustählen ZStE340 und DP1000 wurden Hochgeschwindigkeitsversuche bei unterschiedlichen mehrachsigen Beanspruchungen mit Scherzug-, Flachzug- und Kerbzugproben sowie statische und dynamische Nakajimaversuche durchgeführt. Die Prüfteilverformung wurde bis Versagensbeginn optisch mit Hochgeschwindigkeits-Videokameras mit hoher Auflösung im Einschnürbereich erfasst und mit 2D- und teilweise 3D-Grauwertkorrelations-analyse ausgewertet. Am Versagensort, der mit Hilfe von Videoanalyse und Fraktografie detektiert wurde, wurden die maximal ertragenen Dehnungen kurz vor Bruch als Versagensdehnungen bestimmt. Die Ergebnisse für die verschiedenen Probengeometrien wurden über den aus FE-Rechnung ermittelten Mehrachsigkeitsgraden in Versagensdiagrammen dargestellt. Für beide Werkstoffe ergeben sich vom Scherbereich bis zum Kerbzugbereich abfallende Versagenskurven, zu gleichmäßig biaxialem Zug steigen die Versagenskurven wieder an. Im Bereich von ein- und zweiachsiger Zugbelastung zeigen sich mit zunehmender Dehnrate höhere Versagensdehnungen für DP1000, während kein signifikanter Einfluss der Dehnrate auf die Versagensdehnung für ZStE340 beobachtet wurde. Im Scherbereich dagegen treten für beide Werkstoffe bei höheren Belastungsgeschwindigkeiten niedrigere Versagensdehnungen auf, die auf adiabatische Temperaturerhöhungen in schmalen lokalisierten Zonen zurückzuführen sind und bei crashartigen Scherversuchen mit einer Hochgeschwindigkeits-Infrarotkamera mit über 200 K gemessen wurden. Die Ergebnisse zeigen die Notwendigkeit von Hochgeschwindigkeitsversuchen bei verschiedenen Mehrachsigkeiten auf, um zuverlässige Eingangsdaten für Crashsimulationen bereitzustellen und damit den Versagensbeginn genauer vorauszuberechnen. Dabei sollte dem Scherversagen unter Crashbelastung besondere Aufmerksamkeit gegeben werden, weil die Scherdehnungen hier niedriger sind, als es von Ergebnissen mit statischen Scherversuchen zu erwarten wäre.


Dipl.-Ing. Silke Klitschke Fraunhofer-Institut für Werkstoffmechanik IWM Wöhlerstraße 11 79108 Freiburg, Germany

About the authors

Dipl.-Ing. Silke Klitschke

Dipl.-Ing. Silke Klitschke, born 1967, studied Chemical Engineering at Universität Karlsruhe (TH), Germany, with Diploma in 1994. She worked as a lecturer at different universities of applied sciences for seven years and from 2002 to 2003, as Applications Engineer at Roell Amsler (Zwick Roell Group). Since 2011, she is working as a scientist at Fraunhofer IWM in Freiburg, Germany, in the group “Crashdynamics” in the field of material characterization under high rate and multiaxial loading.

Dr. rer. nat. Wolfgang Böhme

Dr. rer. nat. Wolfgang Böhme, born in 1951, studied Physics at Universität Karlsruhe (TH), Germany, with Diploma in 1977. Since 1978 he is working as a scientist at Fraunhofer IWM in Freiburg, Germany, and finished his PhD at Technische Universität Darmstadt (TU), Germany, in 1985. He established and headed the group “Crashdynamics” and his experience covers the characterization of the behavior of various materials, joints and components under multiaxial loading and high loading rates for crashworthiness analysis as well as high rate fracture mechanics for the assessment of accidentally loaded structures.

Acknowledgement

The authors gratefully acknowledge the Research Associations for Automotive Engineering (FAT) and Steel Application (FOSTA), the “Forschungsvereinigung der Arbeitsgemeinschaft der Eisen und Metall verarbeitenden Industrie e.V. (AVIF)” as well as all partners from the automotive industry for funding this project A278/ VP979 and the steel suppliers for providing the materials and the valuable and fruitful discussions with all partners during the various project meetings. Acknowledgement also goes to Jörg Lienhard for establishing the high speed infrared measurements and Josef Schüler, Clemens Fehrenbach, David Neumann and Johannes Sköries for performing the tests and Dr. Andreas Trondl for providing triaxialities determined by FE simulations.

References

1 Y. Bao, T. Wierzbicki: On fracture locus in the equivalent strain and stress triaxiality space, International Journal of Mechanical Science 46 (2004), pp. 81-98 DOI:10.1016/j.ijmecsci.2004.02.00610.1016/j.ijmecsci.2004.02.006Search in Google Scholar

2 M. Merklein, S. Suttner, M. Johannes, A. Kuppert: Über die Blechprüfung von heute, M. Borsutzki, G. Moninger (Ed.): Proc. Conference Werkstoffprüfung 2012, Deutscher Verband für Materialforschung und -prüfung e.V., Berlin, Germany (2012), pp. 1-6Search in Google Scholar

3 B. A. Behrens, A. Bouguecha, M. Vucetic, I. Peshekhodov: An experimental-numerical method to characterize formability of sheet metals in a wide range of stress states with the help of a tensile-shear test on new butterfly specimens, A. I. Rudskoy (Ed.): Proc. of the International Scientific and Technical Conference Advanced Metal Materials and Technologies – AMMT 2013, , St. Petersburg, Russia (2013), pp. 266-271Search in Google Scholar

4 D.-Z. Sun, F. Andrieux, M. Feucht: Damage modelling of a TRIP steel for integrated simulation from deep drawing to crash, Proc. of the 7th European LS-DYNA Conference, Salzburg, Austria (2009), Paper B-III-04Search in Google Scholar

5 F. Andrieux, D.-Z. Sun: Damage modelling for simulation of process chain from forming to crash, International Journal of Materials Research 101 (2010), No. 8, pp. 963-971 DOI:10.3139/146.11036710.3139/146.110367Search in Google Scholar

6 J. Papasidero: Experimental and Numerical Analysis of Ductile Fracture under Multiaxial Loading, Dissertation, Laboratoire de Méchanique des Solides, Ecole Polytechnique, France (2014)Search in Google Scholar

7 M. Basaran: Stress State Dependent Damage Modeling with a Focus on the Lode Angle Influence, Dissertation der Fakultät für Maschinenwesen, RWTH Aachen, Germany (2011)Search in Google Scholar

8 D. Mohr, R. Treitler: Onset of fracture in high pressure die casting aluminium alloys, International Journal of Engineering Fracture Mechanics 75 (2008), pp. 97-116 DOI:10.1016/j.engfracmech.2007.01.02910.1016/j.engfracmech.2007.01.029Search in Google Scholar

9 W. Böhme: FAT-Richtlinie „Dynamische Werkstoffkennwerte für die Crashsimulation”, Zeitschrift Materialprüfung, Materials Testing 50 (2008), No. 4, pp. 199-205 DOI:10.3139/120.10086510.3139/120.100865Search in Google Scholar

10 W. Bleck, A. Frehn, P. Larour, G. Steinbeck: Untersuchungen zur Ermittlung der Dehnratenabhängigkeit von modernen Karosseriestählen, Materialwissenschaft und Werkstofftechnik 35 (2004), No. 8, pp. 505-513 DOI:10.1002/mawe.20040076710.1002/mawe.200400767Search in Google Scholar

11 D. Mohr, C. Roth: On the developement of Lode angle dependent models for predicting ductile fracture in sheet metal forming, P. Hora (Ed.): Proc. Workshop Time-Dependent Methods for the Evaluation of FLC, Institut of Virtual Manufacturing, ETH Zurich, Switzerland (2014), pp. 123-130Search in Google Scholar

12 M. Borsutzki: High-speed tensile tests on steel – An overview from technique to standardization, Materials Testing 51 (2009), No. 11-12, pp. 761-766 DOI:10.3139/120.11009910.3139/120.110099Search in Google Scholar

13 H. Werner, H. Gese: Zur Bedeutung dehnratenabhängiger Werkstoffkennwerte in der Crashsimulation, Proc. Conference Werkstoffprüfung 2002, Wiley-VCH, Weinheim, Germany (2003), pp. 139-146Search in Google Scholar

14 H. Autenrieth, V. Schulze, N. Herzig, L. W. Meyer: Ductile failure model for the description of AISI 1045 behaviour under different loading conditions, Mechanics of Time-Depend Materials 13 (2009), pp. 215-231 DOI:10.1007/S1 1043-009-9084-y10.1007/S11043-009-9084-ySearch in Google Scholar

15 E. ElMagd, H. Gese, R. Tham, H. Hooputra, H. Werner: Fracture criteria for automobile crashworthiness simulation of wrought aluminium alloy components, Materialwissenschaft und Werkstofftechnik 32 (2001), pp. 712-72410.1002/1521-4052(200109)32:9<712::AID-MAWE712>3.0.CO;2-KSearch in Google Scholar

16 E. ElMagd: Flow and failure behaviour of materials at high strain rates, Proc. DYMAT 2009 – 9th International Conferences on the Mechanical and Physical Behaviour of Materials under Dynamic Loading, Vol. 2, EDP Sciences (2009), pp. 1303-1309 DOI:10.1051/dymat/200918410.1051/dymat/2009184Search in Google Scholar

17 J. Berg, T. Tröster: Ermittlung dynamischer Grenzformänderungsdiagramme für Karosseriestähle, Forschungsvorhaben P727, 1st Ed., Verlag- und Vertriebsgesellschaft mbH, Düsseldorf, Germany (2007)Search in Google Scholar

18 P. Verleysen, J. Peirs, J. Degrieck: Experimental study of dynamic fracture in Ti6Al4V, Prof. G. Nurick: 4th International Conference on Impact Loading of Lightweight Structures ICILLS 2014, Conference Management Centre, Cape Town, South Africa (2014), pp. 24-27Search in Google Scholar

19 C. H. L. J. ten Horn, T. Khandeparkar, J. M. M. Droog: Improving measurement of strain and strain ratio at fracture in sheet metal forming, M. Borsutzki, G. Moninger (Ed.): Proc. Werkstoffprüfung 2012, Deutscher Verband für Materialforschung und -prüfung e.V., Berlin, Germany, pp. 121-126Search in Google Scholar

20 W. S. Farren, G. I. Taylor: The heat developed during plastic extension of metals, Proceedings of the Royal Society A 107, (1925), pp. 422-451 DOI: 10.1098/rspa.1925.003410.1098/rspa.1925.0034Search in Google Scholar

21 G. I. Taylor, G. I., H. Quinney, The latent heat remaining in a metal after cold working, Proceedings of the Royal Society A 143 (1934), pp. 307-326 DOI:10.1098/rspa.1934.000410.1098/rspa.1934.0004Search in Google Scholar

22 P. Rosakis, A. J. Rosakis, G. Ravichandran, J. Hodowany: A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals, Journal of the Mechanics and Physics of Solids 48 (2000), No. 3, pp. 581-607 DOI:10.1016/S0022-5096(99)00048-410.1016/S0022-5096(99)00048-4Search in Google Scholar

23 D. Rittel: Experimental Investigation of transient thermoelastic effects in dynamic fracture, International Journal of Solids and Structures, Vol. 35 (1998), No. 22, pp. 2959-2973 DOI:10.1016/S0020-7683(97)00352-110.1016/S0020-7683(97)00352-1Search in Google Scholar

24 W. Böhme, D.-Z. Sun, W. Schmitt, A. Hönig: Application of Micromechanical Material Models to the Evaluation of Charpy Tests, J. H. Giovanola, A. J. Rosakis (Eds.): ASME Symposium Advances in Local Fracture/Damage Models for the Analysis of Engineering Fracture Problems, AMD Vol. 137, Book No. H00741, Scottsdale, Arizona, USA (1992), pp. 203-216Search in Google Scholar

25 A. Bäumer: Verfestigungsverhalten von hochmanganhaltigen Stählen mit TWIP-Effekt, Berichte aus dem Institut für Eisenhüttenkunde Band 4/2009, Shaker-Verlag GmbH, Aachen, Germany (2009)Search in Google Scholar

26 S. Klitschke, W. Böhme, J. Lienhard: Charakterisierung eines Dualphasenstahls unter crashartiger Belastung und bei unterschiedlichen Mehrachsigkeitsgraden, H. J. Christ (Ed.): Proc. Conference Werkstoffprüfung 2013, Verlag Stahleisen GmbH, Düsseldorf, Germany (2013), pp. 65-70Search in Google Scholar

27 S. Klitschke, W. Böhme: Crashverhalten von Stählen im Automobilbau bei unterschiedlichen mehrachsigen Belastungen, W. Grellmann, H. Frenz (Eds.): Proc. Conference Werkstoffprüfung 2014, Deutscher Verband für Materialforschung und -prüfung e.V. (DVM), Berlin, Germany (2014), pp. 213-218Search in Google Scholar

28 D.-Z- Sun, A. Trondl, S. Klitschke, W. Böhme: Deformation and damage behavior of different steels for automotive application under multiaxial crash loading, H. Eichelkraut (Ed.): The METEC and 2nd European Steel Technology and Application Days (ESTAD), Stahl-Institut VDEh, Düsseldorf, Germany (2015)Search in Google Scholar

29 W. Böhme, M. Hug: Vorrichtung zur schwingungsarmen Kraftmessung bei schnellen, dynamischen Zugversuchen an Werkstoffproben, Deutsches Patent: DE 10 201 861, Anmeldetag: 18.01.2002; Europäisches Patent: EP 1 466 157 B1, Veröffentlichungstag 03.08.2005, US Patent No.: US 7,131340 B2, date of patent: Nov. 7, 2006Search in Google Scholar

30 DIN EN ISO 12004-2: Metallische Werkstoffe – Bleche und Bänder – Bestimmung der Grenzformänderungskurve – Teil 2: Bestimmung von Grenzformänderungskurven im Labor, DIN Deutsches Institut für Normung e.V., Berlin, Germany (2008)Search in Google Scholar

31 W. Böhme, D. Memhard, M. Brand, D. Siegele: Failure behavior of crash-relevant welded aluminium joints, Welding and Cutting 11 (2012), No. 1, pp. 42-48Search in Google Scholar

32 J. Peirs, P. Verleysen, J. Degrieck: Novel technique for static and dynamic shear testing of Ti6Al4 V sheet, Experimental Mechanics 52 (2012), No. 7, pp. 729-741 DOI:10.1007/S11340-011-9541-910.1007/S11340-011-9541-9Search in Google Scholar

33 N. Weiß, T. Marten, T. Tröster: Mehrachsige Werkstoffprüfung bei hoher Dehnrate im Hochgeschwindigkeits-Tiefungsversuch, W. Grellmann, H. Frenz (Eds.): Proc. Conference Werkstoffprüfung 2014, Deutscher Verband für Materialforschung und -prüfung e.V. (DVM), Berlin, Germany (2014), pp. 163-168Search in Google Scholar

34 W. Böhme, S. Klitschke: Verformungs- und Versagensverhalten von Stählen für den Automobilbau unter crashartiger mehrachsiger Belastung (Dynamische Charakterisierung und Nakajimaversuche), IWM-Bericht 1289/2015, Teilbericht zu Forschungsvorhaben A278/P979 (Stiftungsnummer S24/10195/12)Search in Google Scholar

35 T. W. Wright, R. C. Batra: The initiation and growth of adiabatic shear bands, International Journal of Plasticity Vol. 1 (1985), No. 3, pp. 205-212 DOI:10.1016/0749-6419(85)90003-810.1016/0749-6419(85)90003-8Search in Google Scholar

36 D. Rittel, S. Osovski: Dynamic failure by adiabatic shear banding, International Journal of Fracture 162 (2010), No. 1, pp. 177-185 DOI:10.1007/S10704-010-9475-810.1007/S10704-010-9475-8Search in Google Scholar

Published Online: 2022-03-07

© 2016 Carl Hanser Verlag, München

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.3139/120.110836/html
Scroll to top button