Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 23, 2013

Constrained Gibbs energy minimisation

  • Pertti Koukkari , Risto Pajarre and Klaus Hack

Abstract

Computation of chemical equilibria and phase diagrams for multi-phase and non-ideal systems by the material-balance constrained Gibbs free energy minimisation is a modern application of the thermodynamic theory with increasing practical uses. However, in many prospective applications, the behaviour of matter is influenced by additional constraining factors, such as kinetic inhibitions, or electrochemical, charge transport and surface phenomena. For those situations, an extended Gibbs energy method can be applied. In this technique, the supplementary work-coefficient or affinity related condition is introduced to the Gibbs energy calculation as an additional undetermined Lagrange multiplier, which represents the constraint potential. A number of new phenomena can thus be included in Gibbsian calculations. The extended Gibbs energy method is illustrated with some very basic examples.


* Correspondence address, Pertti Koukkari, VTT Process Chemistry, P.O. Box 1000 FIN-02044, Finland, Tel.: +358 9 722 6366, Fax: +358 9 722 7026, E-mail: .

References

[1] The Scientific Papers of J. Willard Gibbs, Ox Bow Press, Woodbridge, Connecticut U.S.A. (1993).Search in Google Scholar

[2] G.Eriksson: Acta Chem. Scand.25 (1971) 2651.10.3891/acta.chem.scand.25-2651Search in Google Scholar

[3] W.R.Smith, R.W.Missen: Chemical reaction equilibrium analysis: theory and algorithms, Krieger publishing company, Malabar, Florida (1991).Search in Google Scholar

[4] N.Saunders, A.P.Miodownik: CALPHAD: Calculation of Phase Diagrams, Elsevier Science Ltd, Oxford (1998).Search in Google Scholar

[5] G.Eriksson, K.Hack: Met. Trans. B21 (1990) 1013.Search in Google Scholar

[6] FACT database Edition 2001, in: FactSage 5.0, CRCT, Montreal and GTT Technologies, Herzogenrath (2001).Search in Google Scholar

[7] S.M.Walas: Phase Equilibria in Chemical Engineering, Butterworth Publishers, Stoneham (1985).Search in Google Scholar

[8] A.L.Ballard, E.D.Sloan: Fluid Phase Eq.218 (2004) 15.Search in Google Scholar

[9] D.V.Nichita, S.Gomez, E.Luna: Computers chem. Engng.26 (2002) 1703.Search in Google Scholar

[10] T.Lopez-Arenas, E.S.Perez-Cisneros, R.Gani, in: V. Plesu, P.S. Agachi (Eds.), Proceedings of the 16th European Symposium on Computer-Aided Process Engineering (2006) 1323.10.1016/S1570-7946(06)80230-0Search in Google Scholar

[11] C.Y.Jones, G.Chen, S.Dai, P.M.Singh: Ind. Eng. Chem. Res.42 (2003) 4228.Search in Google Scholar

[12] P.Koukkari, R.Pajarre, H.Pakarinen: J. Solution Chem.31 (2002) 627.Search in Google Scholar

[13] P.Koukkari: Computers chem. Engng.17 (1993) 1157.10.1016/0098-1354(93)80096-6Search in Google Scholar

[14] P.Koukkari, R.Pajarre: Calphad30 (2006) 18.Search in Google Scholar

[15] S.Petersen, K.Hack: Int. J. Mat. Res. present volume.Search in Google Scholar

[16] P.Koukkari, K.Penttilä, K.Hack, S.Petersen, in: Y.Brechet (Ed.), Microstructures, Mechanical Properties and Processes, Euromat 99 – Volume 3, Wiley-VCH Publishers, Weinheim (2000) 323.Search in Google Scholar

[17] P.Koukkari, K.Hack, in: K.Hack (Ed.) The SGTE – Case Book – Thermodynamics at Work, Second Edition, Woodhead Publishing Ltd., Abington, Cambridge (2007).Search in Google Scholar

[18] R.A.Alberty: Pure Appl. Chem.73 (2001) 1349.10.1351/pac200173081349Search in Google Scholar

[19] J.A.V.Butler: Proc. Roy. Soc. A135 (1932) 348.10.1098/rspa.1932.0040Search in Google Scholar

[20] R.Pajarre, P.Koukkari, T.Tanaka, Y.Lee: Calphad30 (2006) 196.Search in Google Scholar

[21] J.C.Joud, N.Eustathopoulos, P.Desse: J. Chim. Phys.70 (1973) 1290.Search in Google Scholar

[22] G.Metzger: Z. Phys. Chem.211 (1959) 1.Search in Google Scholar

[23] T.Tanaka, K.Hack, T.Ida, S.Hara: Z. Metallkd.87 (1996) 380.Search in Google Scholar

[24] R.Pajarre, P.Koukkari, T.Tanaka: Modelling of Surface and Interfacial Phenomena Using a Multi-Phase Free Energy Minimisation Model, CALPHAD, 6.–11. 5. 2007.Search in Google Scholar

[25] F.Helfferich: Ion Exchange, Dover Publications, Mineola, New York (1995).10.1149/1.2425793Search in Google Scholar

[26] R.Pajarre, P.Koukkari, E.Räsänen: J. Molecular Liquids125 (2006) 58.Search in Google Scholar

[27] M.Towers, A.M.Scallan: J. Pulp. Pap. Sci.22 (1996) J332.Search in Google Scholar

[28] A.Sundquist: Modelling the Chemistry of Metal Cations in Pulp and Papermaking Processes, Ph.D. thesis manuscript, (to be published at Helsinki University of Technology).Search in Google Scholar

[29] P.Koukkari, R.Pajarre, E.Räsänen, in: T.M.Letcher (Ed.), Chemical Thermodynamics for Industry, Royal Society of Chemistry, Cambridge (2004) 23.Search in Google Scholar

[30] R.Andersson, J.Liden, L.-O.Öhman: Nordic Pulp and Paper Research J.21 (2006) 264.Search in Google Scholar

[31] R.Haase: Thermodynamics of Irreversible Processes, Dover Publications, New York (1990).10.1063/1.3022576Search in Google Scholar

[32] P.Koukkari; R.Pajarre: Computers chem. Engng.30 (2006) 1189.10.1016/j.compchemeng.2006.03.001Search in Google Scholar

[33] P.Koukkari, K.Penttilä, M.Keegel, in: K. Hilpert, W. Froben, L. Singheiser (Eds.), Proceedings of the 10th International IUPAC Conference on High Temperature Materials Chemistry, Part I, Forschungszentrum Julich (2000) 253.Search in Google Scholar

Received: 2007-3-30
Accepted: 2007-7-20
Published Online: 2013-05-23
Published in Print: 2007-10-01

© 2007, Carl Hanser Verlag, München

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.3139/146.101550/html
Scroll to top button