Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 11, 2013

Toward reliable calculations of heat and plastic flow during friction stir welding of Ti-6Al-4V alloy

  • R. Nandan , T. J. Lienert and T. DebRoy

Abstract

Heat transfer and visco-plastic flow during friction stir welding of Ti-6Al-4V alloy have been modeled in three dimensions by numerically solving the equations of conservation of mass, momentum and energy using temperature dependent thermo-physical properties and temperature and strain-rate dependent viscosity values. The computed results showed that five important model parameters, i. e., the spatially variable friction coefficient, the spatially variable slip between the tool and the workpiece, the extent of viscous dissipation, the mechanical efficiency and the spatially variable heat transfer rate from the bottom surface of the workpiece significantly affected both the temperature fields and the computed torque on the tool. An important problem in the modeling of friction stir welding is that the values of these five parameters cannot be specified from fundamental principles and, and as a result, computed results are not always accurate. Here we show that by combining the heat transfer and plastic flow model with a genetic algorithm based optimization scheme, the values of the five uncertain parameters can be determined from a limited volume of experimental data so that the model predictions of peak temperatures and cooling rates match well with the experimental results. The computed results show that for the welding conditions reported in this paper, close to sticking condition prevailed at the tool – workpiece interface for all the experiments. The extent of viscous dissipation converted to heat was fairly low indicating lack of intimate atomic mixing in the stir zone. Computed three dimensional pressure distributions and streamlines were consistent with defect-free reliable welds for all conditions of welding studied.


* Correspondence address, T. DebRoy, Professor of Materials Science and Engineering, 115 Steidle Bldg, Pennsylvania State University, University Park, PA 16802, USA, Tel.: +1 814 865 1974, E-mail:

References

[1] W.M.Thomas, E.D.Nicholas, J.C.Needham, M.G.Church, P.Templesmith, C.Dawes, GB Patent No. 5460317 (1991).Search in Google Scholar

[2] W.Zhang, C.H.Kim, T.DebRoy: J. Appl. Phys.95 (2004) 5210.10.1063/1.1699485Search in Google Scholar

[3] W.Zhang, C.H.Kim, T.DebRoy: J. Appl. Phys.95 (2004) 5220.10.1063/1.1699486Search in Google Scholar

[4] C.H.Kim, W.Zhang, T.DebRoy: J. Appl. Phys.94 (2003) 2667.10.1063/1.1592012Search in Google Scholar

[5] S.Mishra, T.DebRoy: Acta Mater.52 (2004) 1183.10.1016/j.actamat.2003.11.003Search in Google Scholar

[6] S.Mishra, T.DebRoy: J. Phys. D: Appl. Phys.37 (2004) 2191.10.1088/0022-3727/37/15/022Search in Google Scholar

[7] K.Mundra, T.DebRoy, S.S.Babu, S.A.David: Weld. J.76 (1997) S163.Search in Google Scholar

[8] T.Hong, W.Pitscheneder, T.DebRoy: Sci. Technol. Weld. Joi.3 (1998) 33.10.1179/136217198791152971Search in Google Scholar

[9] X.He, T.DebRoy, P.W.Fuerschbach: J. Appl. Phys.94 (2003) 6949.10.1063/1.1622118Search in Google Scholar

[10] R.Miller, T.Debroy: J. Appl. Phys.68 (1990) 2045.10.1063/1.346555Search in Google Scholar

[11] K.Mundra, T.Debroy: Metall. Trans. B24 (1993) 145.10.1007/BF02657881Search in Google Scholar

[12] M.Pastor, H.Zhao, R.P.Martukanitz, T.Debroy: Weld. J.78 (1999) 207S.Search in Google Scholar

[13] H.Zhao, T.DebRoy: J. Appl. Phys.93 (2003) 10089.10.1063/1.1573732Search in Google Scholar

[14] H.Schmidt, J.Hattel, J.Wert: Model. Simul. Mater. Sci.12 (2004) 143.10.1088/0965-0393/12/1/013Search in Google Scholar

[15] N.Kamp, A.Sullivan, J.D.Robson: Mater. Sci. Eng., A466 (2007) 246.10.1016/j.msea.2007.02.070Search in Google Scholar

[16] R.Nandan, G.G.Roy, T.J.Lienert, T.Debroy: Acta Mater.55 (2007) 883.10.1016/j.actamat.2006.09.009Search in Google Scholar

[17] R.Nandan, B.Prabu, A.De, T.Debroy: Weld. J.86 (2007) 313S.Search in Google Scholar

[18] R.Crawford, G.E.Cook, A.M.Strauss, D.A.Hartman, M.A.Stremler: Sci. Technol. Weld. Joi.11 (2006) 657.10.1179/174329306X147742Search in Google Scholar

[19] R.Nandan, G.G.Roy, T.Debroy: Metall. Mater. Trans. A37 (2006) 1247.10.1007/s11661-006-1076-9Search in Google Scholar

[20] G.G.Roy, R.Nandan, T.DebRoy: Sci. Technol. Weld. Joi.11 (2006) 606.10.1179/174329306X122811Search in Google Scholar

[21] R.Nandan, G.G.Roy, T.J.Lienert, T.Debroy: Sci. Technol. Weld. Joi.11 (2006) 526.10.1179/174329306X107692Search in Google Scholar

[22] C.M.Chen, R.Kovacevic: Int. J. Mach. Tool. Manu.43 (2003) 1319.10.1016/S0890-6955(03)00158-5Search in Google Scholar

[23] P.A.Colegrove, H.R.Shercliff: Sci. Technol. Weld. Joi.8 (2003) 360.10.1179/136217103225005534Search in Google Scholar

[24] P.Ulysse: Int. J. Mach. Tool. Manu.42 (2002) 1549.10.1016/S0890-6955(02)00114-1Search in Google Scholar

[25] M.Z.H.Khandkar, J.A.Khan: J Mater Process Manu10 (2001) 91.Search in Google Scholar

[26] A.P.Reynolds: Mater. Sci. Forum519–521 (2006) 1095.10.4028/www.scientific.net/MSF.519-521.1095Search in Google Scholar

[27] P.A.Colegrove, H.R.Shercliff: Sci. Technol. Weld. Joi.11 (2006) 429.10.1179/174329306X107700Search in Google Scholar

[28] A.De, T.DebRoy: J. Phys. D: Appl. Phys.37 (2004) 140.10.1088/0022-3727/37/1/023Search in Google Scholar

[29] A.De, T.DebRoy: J. Appl. Phys.95 (2004) 5230.10.1063/1.1695593Search in Google Scholar

[30] A.De, T.DebRoy: Weld. J.84 (2005) 101S.Search in Google Scholar

[31] R.Storn, K.Price: Journal of Global Optimization11 (1997) 341.10.1023/A:1008202821328Search in Google Scholar

[32] K.Price, R.Storn: Dr Dobbs Journal22 (1997) 18.Search in Google Scholar

[33] O.C.Zienkiewicz, I.C.Cormeau: Arch. Mech.24 (1972) 873.Search in Google Scholar

[34] T.Sheppard, D.S.Wright: Met. Technol.6 (1979) 215.Search in Google Scholar

[35] S.Bruschi, S.Poggio, F.Quadrini, M.E.Tata: Mater. Lett.58 (2004) 3622.10.1016/j.matlet.2004.06.058Search in Google Scholar

[36] http://aries.ucsd.edu/LIB/PROPS/PANOS/w.htmlSearch in Google Scholar

[37] R.Boyer, G.Welsch, E.W.Collings: Materials properties handbook: Titanium alloys, ASM International, Materials Park OH (1994).Search in Google Scholar

[38] H.S.Carslaw, J.C.Jaegar: Conduction of Heat in Solids, Clarendon Press, Oxford (1959).Search in Google Scholar

[39] T.J.Lienert, W.L.Stellwag, B.B.Grimmett, R.W.Warke: Weld. J.82 (2003) 1S.10.1179/136217103225008847Search in Google Scholar

[40] R.Schuhmann: Metallurgical Engineering, Addison-Wesley Press (1952).Search in Google Scholar

[41] S.V.Patankar: Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, New York (1980).Search in Google Scholar

[42] Z.Deng, M.R.Lovell, K.A.Tagavi: J. Manuf. Sci. Engg.-Trans. A.S.M.E123 (2001) 647.10.1115/1.1383028Search in Google Scholar

[43] H.S.Kong, M.F.Ashby: M.R.S. Bulletin16 (1991) 41.Search in Google Scholar

[44] M.Z.H.Khandkar, J.A.Khan, A.P.Reynolds: Sci. Technol. Weld. Joi.8 (2003) 165.10.1179/136217103225010943Search in Google Scholar

[45] A.I.Kahveci, G.E.Welsch: Scri. Metall. Mater.20 (1986) 1287.10.1016/0036-9748(86)90050-5Search in Google Scholar

Received: 2007-11-10
Accepted: 2008-1-27
Published Online: 2013-06-11
Published in Print: 2008-04-01

© 2008, Carl Hanser Verlag, München

Downloaded on 21.5.2024 from https://www.degruyter.com/document/doi/10.3139/146.101655/html
Scroll to top button