Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 11, 2013

STAU – a review of the Karlsruhe weakest link finite element postprocessor with extensive capabilities

  • Heinz Riesch-Oppermann , Martin Härtelt and Oliver Kraft

Abstract

The inherent brittleness of ceramics led to a probabilistic approach for designing with ceramic materials. For tackling this issue, numerous research projects led to the generation and continuous development of the weakest link postprocessor STAU over the last twenty years. Compared to other similar tools, STAU is unique in its comprehensive capabilities addressing spontaneous fracture, sub-critical crack propagation under transient loading, including a temperature-dependent fracture stress, and crack propagation parameters and analysis of strong stress gradients allowing for solving general thermo-mechanical problems including thermal shock and contact loading. Remarkably, the stress analysis, using commercial finite element codes, does not require a separate meshing with respect to the subsequent probabilistic analysis. Within the framework of a collaborative research effort (SFB 483) ceramics are qualified with respect to friction and wear for highly demanding applications. Here, uncertainty analysis methods for STAU were developed and led to an important extension of STAU for several technological applications. In this paper, the main features of STAU as well as the physical background are revisited and some application cases are shown.


* Correspondence address, Dr. Heinz Riesch-Oppermann, Forschungszentrum Karlsruhe GmbH, P.O. Box 36 40, D-76021 Karlsruhe, Germany, Tel.: +49 7247 82 41 55, Fax: +49 7247 82 23 47, E-mail:

Dedicated to Professor Dr. Karl-Heinz Zum Gahr on the occasion of his 65th birthday


References

[1] A.Brückner-Foit, A.Heger, K.Heiermann, P.Hülsmeier, A.Mahler, A.Mann, H.Riesch-Oppermann, S.Scherrer-Rudiy, I.Ulrich, C.Ziegler: STAU 5 User's Manual, Internal Report, Forschungszentrum Karlsruhe (2007).Search in Google Scholar

[2] B.Schenk, P.J.Brehm, M.N.Menon, W.T.Tucker, A.D.Peralta: J. Eng. Gas Turbines Power122 (2000) 637645.10.1115/1.1287492Search in Google Scholar

[3] N.N.Nemeth, L.M.Powers, L.A.Janosik, J.P.Gyekenyesi: CARES/LIFE Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program, NASA/TM-2003-106316, Cleveland, Ohio (2003).Search in Google Scholar

[4] S.Krüger, R.Jakel, D.Rubio, H.-J.Barth: Konstruktion51 (1999) 3336.Search in Google Scholar

[5] K.-H.ZumGahr, J.Schneider: Mat.-wiss. u. Werkstofftech.36 (2005) No. 3/4, 91190.Search in Google Scholar

[6] F.T.Peirce: J. Text. Inst.17 (1926) T355368.10.1080/19447027.1926.10599953Search in Google Scholar

[7] W.Weibull: Ingeniors Vetenskaps Akad. Handl.151 (1939) 145.Search in Google Scholar

[8] S.B.Batdorf, J.G.Crose: J. Applied Mechanics41 (1974) 459461.10.1115/1.3423310Search in Google Scholar

[9] S.B.Batdorf, H.L.Heinisch: J. Am. Ceram. Soc.61 (1978) 355358.10.1111/j.1151-2916.1978.tb09327.xSearch in Google Scholar

[10] A.G.Evans: J. Am. Ceram. Soc.61 (1978) 302308.10.1111/j.1151-2916.1978.tb09314.xSearch in Google Scholar

[11] Y.Matsuo: Bull. JSME24 (1981) 290294.10.1299/jsme1958.24.290Search in Google Scholar

[12] A.Brückner-Foit, A.Heger, D.Munz, in: C.R.Brinkman, S.F.Duffy (Eds.), Life Prediction Methods and Data for Ceramic Materials, ASTM STP 1201, American Society for Testing and Materials, Philadelphia (1994) 346359.Search in Google Scholar

[13] A.Brückner-Foit, C.Ziegler: Ceramic Engineering and Science Proceedings 19 (1998) No. 4, 99106.Search in Google Scholar

[14] P.Hülsmeier: Lebensdauervorhersage für keramische Bauteile unter Thermoschockbelastung (Dissertation), Universität Kassel (2005).Search in Google Scholar

[15] D.Munz, T.Fett: Ceramics – Mechanical Properties, Failure Behaviour, Materials Selection, Springer (1999).10.1007/978-3-642-58407-7Search in Google Scholar

[16] T.Thiemeier: Lebensdauervorhersage für keramische Bauteile unter mehrachsiger Beanspruchung, (Dissertation), Universität Karlsruhe (1989).Search in Google Scholar

[17] T.Thiemeier, A.Brückner-Foit, H.Kölker: J. Am. Ceram. Soc.74 (1991) 4852.10.1111/j.1151-2916.1991.tb07295.xSearch in Google Scholar

[18] K.-S.Schirmer: Entwicklung von Versagenskriterien für keramische Bauteile unter mehrachsiger Belastung, Fortschritt-Berichte VDI, Reihe 18, Nr. 174, VDI-Verlag, Düsseldorf (1995).Search in Google Scholar

[19] A.Brückner-Foit, T.Fett, K.Schirmer, D.Munz: J. Eur. Ceram. Soc.16 (1996) 12011207.10.1016/0955-2219(96)00055-6Search in Google Scholar

[20] A.Brückner-FoitP.Hülsmeier, M.Sckuhr, H.Riesch-Oppermann: ASME Paper 2000-GT-663.Search in Google Scholar

[21] C.Ziegler: Bewertung der Zuverlässigkeit keramischer Komponenten bei zeitlich veränderlichen Spannungen und bei Hochtemperaturbelastung, Fortschritt-Berichte VDI, Reihe 18, Nr. 228, VDI-Verlag Düsseldorf (1998).Search in Google Scholar

[22] A.Brückner-Foit, C.Ziegler: ASME Paper 99-GT-233.Search in Google Scholar

[23] T.Fett, D.Munz: J. Mat. Sci. Lett.17 (1998) 307309.10.1023/A:1006585706742Search in Google Scholar

[24] M.Härtelt, H.Riesch-Oppermann, O.Kraft, in: K.-H.Zum Gahr, J.Schneider (Eds.), 3. Statuskolloquium des Sonderforschungsbereichs 483 – Hochbeanspruchte Gleit- und Friktionssysteme auf Basis ingenieurkeramischer Werkstoffe, Universität Karlsruhe (2007) 129136.Search in Google Scholar

[25] R.Nejma, K.-H.Lang, D.Löhe: Mat. Sci. Eng. A387–389 (2004) 832836, DOI:10.1016/j.msea.2004.02.090.10.1016/j.msea.2004.02.090Search in Google Scholar

[26] C.Lu, R.Danzer, F.D.Fischer: Phys. Rev. E65 (2002) 067102, DOI: 10.1103/PhysRevE.65.067102.10.1103/PhysRevE.65.067102Search in Google Scholar

[27] R.Danzer, T.Lube, P.Supancic, R.Damani: Advanced Engineering Materials10 (2008) 275298, DOI: 10.1002/adem.200700347.10.1002/adem.200700347Search in Google Scholar

[28] H.Bueckner: ZAMM50 (1970) 529546.Search in Google Scholar

[29] T.Fett, D.Munz: Stress intensity factors and weight functions, Computational Mechanics Publ., Southampton (1997).Search in Google Scholar

[30] M.A.Sckuhr, Spannungssingularitäten und deren Bewertung in mechanisch beanspruchten Zweistoffverbunden unter Berücksichtigung der Plastizität, (Dissertation), Universität Karlsruhe (1997).Search in Google Scholar

[31] A.Brückner-Foit, in: K.H.Buschow (Ed.), Encyclopedia of Materials: Science and Technology, Elsevier (2001) 817823.Search in Google Scholar

[32] O.M.Jadaan, N.N.Nemeth: Fat. Fract. Eng. Mat. Struct.24 (2001) 475487.10.1046/j.1460-2695.2001.00419.xSearch in Google Scholar

[33] J.Bagdahn, W.N.SharpeJr., O.Jadaan: J. MEMS12 (2003) 302312, DOI: 10.1109/JMEMS. 2003.814130.Search in Google Scholar

[34] A.Brückner-FoitP.Hülsmeier, E.Diegele, U.Rettig, C.Hohmann: ASME Paper 2002-GT-30502.Search in Google Scholar

[35] www.icf11.com/proceeding/EXTENDED/4993.pdfSearch in Google Scholar

[36] O.M.Jadaan, N.N.Nemeth, J.Bagdahn, W.N.Sharpe, Jr.: J. Mat. Sci.38 (2003) 40874113.10.1023/A:1026317303377Search in Google Scholar

[37] L.Dortmans, T.Thiemeier, A.Brückner-Foit, J.Smart: J. Eur. Ceram. Soc.11 (1993) 1722.10.1016/0955-2219(93)90054-USearch in Google Scholar

[38] A.Heger: Bewertung der Zuverlässigkeit mehrachsig beanspruchter keramischer Bauteile, Fortschritt-Berichte VDI, Reihe 18, Nr. 132, VDI-Verlag Düsseldorf (1993).Search in Google Scholar

[39] T.Fett, D.Munz: J. Mat. Sci.28 (1993) 742752.10.1007/BF01151251Search in Google Scholar

[40] D.Munz: J. Am. Ceram. Soc.90 (2007) 115, DOI: 10.1111/j.1551–2916.2006.01447.x10.1111/j.1551-2916.2006.01447.xSearch in Google Scholar

[41] A.Brückner-Foit, A.Heger, D.Munz: J. Eng. Gas Turbines Power117 (1995) 413416.10.1115/1.2814111Search in Google Scholar

[42] C.M.Bishop: Neural Networks for Pattern Recognition, Oxford University Press, Oxford (1995 & numerous reprints).Search in Google Scholar

[43] I.Khader, A.Kailer, P.Gumbsch, in: K.-H.ZumGahr, J.Schneider (Eds.), 3. Statuskolloquium des Sonderforschungsbereichs 483 – Hochbeanspruchte Gleit- und Friktionssysteme auf Basis ingenieurkeramischer Werkstoffe, Universität Karlsruhe (2007) 95103.Search in Google Scholar

[44] T.J.DiCiccio, B.Efron: Statistical Science11 (1996) 189211.10.1214/ss/1032280214Search in Google Scholar

[45] K.Heiermann: Konfidenzintervalle für die Ausfallwahrscheinlichkeit keramischer Bauteile auf Grundlage der Bootstrapmethode (Dissertation), FZKA Report 6918, Forschungszentrum Karlsruhe (2003).Search in Google Scholar

[46] K.Heiermann, H.Riesch-Oppermann, N.Huber: Computational Materials Science34 (2005) 113, DOI:10.1016/j.commatsci.2004.10.002.10.1016/j.commatsci.2004.10.002Search in Google Scholar

[47] H.Riesch-Oppermann, S.Scherrer-Rudiy, T.Erbacher, O.Kraft: Engineering Fracture Mechanics74 (2007) 29332942; (Special Issue on “Reliability – Statistical Methods in Fracture and Fatigue”), DOI:10.1016/j.engfracmech.2006.05.026.10.1016/j.engfracmech.2006.05.026Search in Google Scholar

[48] T.Erbacher, T.Beck, O.Vöhringer: Mat-wiss. u. Werkstofftech.36 (2005) 14856, DOI: 10.1002/mawe.200500859.10.1002/mawe.200500859Search in Google Scholar

[49] S.Roudi, H.Riesch-Oppermann, O.Kraft: Mat.-wiss. u. Werkstofftech.36 (2005) 171176, DOI: 10.1002/mawe.200500861.10.1002/mawe.200500861Search in Google Scholar

Received: 2008-4-4
Accepted: 2008-7-25
Published Online: 2013-06-11
Published in Print: 2008-10-01

© 2008, Carl Hanser Verlag, München

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.3139/146.101735/html
Scroll to top button