Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 11, 2013

Creep strength of a binary Al62Ti38 alloy

  • Daniel Sturm , Martin Heilmaier , Holger Saage , Julio Aguilar , Georg J. Schmitz , Anne Drevermann , Martin Palm , Frank Stein , Nico Engberding , Klemens Kelm and Stephan Irsen

Abstract

Al-rich Ti – Al alloys, as compared to Ti-rich -TiAl-based alloys, offer an additional reduction in density of 20 %, better oxidation resistance and sufficient strength at high temperatures. High temperature creep of a binary Al62Ti28 alloy was studied in compression in the temperature range between 1 173 K and 1 323 K in air. It is shown that the alloy exhibits quite reasonable creep resistance at 1 173 K, especially in view of its low density of around 3.8 g cm– 3. Stress exponents calculated as the slope n = log (strain rate)/ log (stress) = 4 were found to be relatively constant for the temperature and stress regime investigated. This indicates that dislocation climb may be the rate controlling creep mechanism. The values of the activation energies for creep for the as-cast and the annealed Al62Ti38 material coincides well with those found in the literature for interdiffusion of Al in -TiAl.

Keywords: TiAl alloys; Creep

* Correspondence address, Daniel Sturm, Otto-von-Guericke-Universität Magdeburg, Ernst-Schiebold-Gebäude (Geb. 50), Große Steinernetischstraße 6, D-39104 Magdeburg, Germany. Tel.: +49 391 671 45 72, Fax: +49 391 671 45 69, E-mail:

Dedicated to Professor Dr. Monika Feller-Kniepmeier on the occasion of her 80th birthday


References

[1] M.Dietrich: Titan-Aluminium-Legierungen – eine Werkstoffgruppe mit Zukunft, (Projektträger Jülich, Neue Materialien und Chemische Technologien, Jülich, 2002) pp. 1131.Search in Google Scholar

[2] H.Clemens, H.Kestler: Adv. Eng. Mater.2 (2000) 551570.10.1002/1527-2648(200009)2:9<551::AID-ADEM551>3.0.CO;2-USearch in Google Scholar

[3] M.Eckert, K.Hilpert, in: H.J.Grabke, M.Schütze (Eds.), Oxidation of Intermetallics, Wiley-VCH, 1997.Search in Google Scholar

[4] L.C.Zhang, M.Palm, F.Stein, G.Sauthoff: Intermetallics9 (2001) 229238.10.1016/S0966-9795(00)00125-4Search in Google Scholar

[5] F.Stein, L.C.Zhang, M.Palm, G.Sauthoff, in: K.J.Hemker, D.M.Dimiduk, H.Clements, R.Darolia, H.Inui, J.M.Larsen, V.K.Sikka, M.Thomas, J.D.Whittenberger (Eds.), Structural Intermetallics 2001, TMS, Warrendale, 2001, pp. 495504.Search in Google Scholar

[6] M.Palm, L.C.Zhang, F.Stein, G.Sauthoff: Intermetallics10 (2002) 523540.10.1016/S0966-9795(02)00022-5Search in Google Scholar

[7] M.Blum, G.Jarczyk, H.Scholz, S.Pleier, P.Busse, H.J.Laudenberg, K.Segtrop, R.Simon: Mater. Sci. Eng.329–331 (2002) 616620.10.1016/S0921-5093(01)01513-1Search in Google Scholar

[8] K.Kelm, S.Irsen, M.Paninski, A.Drevermann, G.J.Schmitz, M.Palm, F.Stein, N.Engberding, M.Heilmaier, H.Saage, D.Sturm: Microscopy and Microanalysis 13, Supp.S03 (2007) 294295.10.1017/S1431927607081470Search in Google Scholar

[9] K.Kelm, J.Aguilar, A.Drevermann, G.J.Schmitz, M.Palm, F.Stein, N.Engberding, S.Irsen, in: M. Palm Y.-H. He, M. Takeyama, J.M.K. Wiezorek (Eds.): In situ TEM Observation of Precipitation Reactions in Ti40Al60 and Ti38Al62 Alloys and Symmetry Relations of the Phases Involved, Mat. Res. Soc. Symp. Proc. 1128, MRS, Warrendale, PA, 2009, pp. 135140.Search in Google Scholar

[10] P.Duwez, J.L.Taylor: Trans. AIME194 (1952) 7071.Search in Google Scholar

[11] J.C.Schuster, H.Ipser: Z. Metallkd.81 (1990) 389396.Search in Google Scholar

[12] J.Braun, M.Ellner: J. Alloys Compd.309 (2000) 118122.DOI:10.1016/S0925-8388(00)01031-810.1016/S0925-8388(00)01031-8Search in Google Scholar

[13] R.Miida, S.Hashimoto, D.Watanabe: Jap. J. Appl. Phys.21 (1982) L59L 61.10.1143/JJAP.21.L59Search in Google Scholar

[14] D.Sturm, M.Heilmaier, H.Saage, M.Paninski, G.J.Schmitz, A.Drevermann, M.Palm, F.Stein, N.Engberding, K.Kelm, S.Irsen: Mater. Sci. Eng. A510 (2009) 373376.DOI:10.1016/j.msea.2008.01.10210.1016/j.msea.2008.01.102Search in Google Scholar

[15] C.R.Barrett, W.D.Nix: Acta Metall.13 (1965) 12471258.DOI:10.1016/0001-6160(65)90034-910.1016/0001-6160(65)90034-9Search in Google Scholar

[16] H.J.Frost, M.F.Ashby: Deformation-Mechanism-Maps, in: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, 1982.Search in Google Scholar

[17] S.Karthikeyan, G.B.Viswanathan, M.J.Mills: Acta Mater.52 (2004) 25772589.10.1016/j.actamat.2004.02.006Search in Google Scholar

[18] Y.Mishin, C.Herzig: Acta Mater.48 (2000) 589623.DOI:10.1016/S1359-6454(99)00400-010.1016/S1359-6454(99)00400-0Search in Google Scholar

[19] R.W.Hayes, P.L.Martin: Acta Metall. Mater.43 (1995), 27612772.10.1016/0956-7151(94)00486-2Search in Google Scholar

[20] F.Appel, M.Oehringer, R.Wagner: Intermetallics8 (2000) 1283.10.1016/S0966-9795(00)00036-4Search in Google Scholar

Received: 2009-11-11
Accepted: 2010-2-19
Published Online: 2013-06-11
Published in Print: 2010-05-01

© 2010, Carl Hanser Verlag, München

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.3139/146.110321/html
Scroll to top button