Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 31, 2013

Molecular dynamics simulation of gold solid film lubrication

Dedicated to Professor Dr. Hermann Riedel on the occasion of his 65th birthday

  • Lars Pastewka , Joël Peguiron , Peter Gumbsch and Michael Moseler

Abstract

The lubrication mechanisms in ultrathin solid gold films confined between two rough nickel surfaces have been investigated employing classical molecular dynamics with a second moment tight-binding potential. Three types of nickel surfaces are considered: Ni(111), Ni(001) single- and an Ni(001) –(111) bicrystal. In all three systems, gold layers that have been quenched from the melt organise in (111) layers parallel to the nickel interfaces. The relative sliding of the two single crystal nickel tribopartners requires a shear stress of around 170 MPa – a value that is almost one order of magnitude lower than the ideal plastic shear stress of single crystal bulk gold. This reduced stress can be explained by a misfit dislocation mechanism in a single plane close to the Ni/Au interface. In the case of the Ni(001) – (111) bicrystal, the nickel grain boundaries induce grain boundaries in the quenched gold film which vanish during sliding. During subsequent sliding the nickel grain boundaries act as nucleation centres for dislocation loops leading to an increased shear stress of 490 MPa. The same is observed for an embedded hydrocarbon impurity. Also here dislocation loops are emitted on (111) planes that are tilted with respect to the sliding plane.


* Correspondence address: Prof. Dr. Michael Moseler, Fraunhofer Institute for Mechanics of Materials IWM, Wöhlerstraße 11, D-79108 Freiburg, Germany, Tel.: +49 761 5142 332, Fax: +497615142491. E-mail:

References

[1] E.D.Nicholson: Gold Bulletin12 (1979) 161.10.1007/BF03215119Search in Google Scholar

[2] Y.Miyakawa: Gold Bulletin13 (1980) 21.10.1007/BF03215126Search in Google Scholar

[3] M.Antler, T.Spalvins: Gold Bulletin21 (1988) 59.10.1007/BF03214666Search in Google Scholar

[4] F.Chiñas-Castillo, H.Spikes: Trans. ASME125 (2003) 552. 10.1115/1.1537752Search in Google Scholar

[5] K.Miyoshi, T.Spalvins, D.H.Buckley: Wear108 (1986) 169. 10.1016/0043-1648(86)90095-5Search in Google Scholar

[6] D.-S.Jang, D.E.Kim: Wear196 (1996) 171. 10.1016/0043-1648(95)06918-6Search in Google Scholar

[7] B.N.J.Persson: Sliding Friction, Springer Verlag, Berlin-Heidelberg (2000).10.1007/978-3-662-04283-0Search in Google Scholar

[8] F.Bowden, D.Tabor: Friction and Lubrication of Solids. Clarendon Press, Oxford (1950).Search in Google Scholar

[9] H.D.Espinosa, B.C.Prorok, B.Peng: J. Mech. Phys. Solids52 (2004) 667. 10.1016/j.jmps.2003.07.001Search in Google Scholar

[10] G.Dehm, T.J.Balk, B.von Blanckenhagen, P.Gumbsch, E.Arzt: Z. Metallkd.93 (2002) 383.Search in Google Scholar

[11] E.Arzt, G.Dehm, P.Gumbsch, O.Kraft, D.Weiss: Prog. Mater. Sci.46 (2001) 283. 10.1016/S0079-6425(00)00015-3Search in Google Scholar

[12] M.R.SørensenK.W.Jacobsen, P.Stoltze: Phys. Rev. B53 (1995) 2101. 10.1103/PhysRevB.53.2101Search in Google Scholar

[13] J.E.Hammerberg, B.L.Holian, T.C.Germann, R.Ravello: Metall. Mater. Trans. A35 (2004) 2741.10.1007/s11661-004-0220-7Search in Google Scholar

[14] J.E.Hammerberg, B.L.Holian, J.Röder, A.R.Bishop, S.J.Zhou: Physica D123 (1998) 330. 10.1016/S0167-2789(98)00132-8Search in Google Scholar

[15] F.Delogu: Mat. Sci. Eng. A426 (2006) 355. 10.1016/j.msea.2006.02.044Search in Google Scholar

[16] X.-Y.Fu, D.A.Rigney, M.L.Falk: J. Non-Cryst. Solids317 (2003) 206. 10.1016/S0022-3093(02)01999-3Search in Google Scholar

[17] E.Aprà, F.Baletto, R.Ferrando, A.Fortunelli: Phys. Rev. Lett.93 (2004) 065502. 10.1103/PhysRevLett.93.065502Search in Google Scholar PubMed

[18] F.Cleri, V.Rosato: Phys. Rev. B48 (1993) 22. 10.1103/PhysRevB.48.22Search in Google Scholar PubMed

[19] T.Deutsch, P.Bayle, F.Lancon, J.Thibault: J. Phys.: Condens. Matter7 (1995) 6407. 10.1088/0953-8984/7/32/007Search in Google Scholar

[20] T.K.Xia, J.Ouyang, M.W.Ribarsky, U.Landman: Phys. Rev. Lett.69 (1992) 1967. 10.1103/PhysRevLett.69.1967Search in Google Scholar PubMed

[21] J.-P.Ryckaert, A.Bellemans: Faraday Discuss. Chem. Soc.66 (1978) 95. 10.1039/dc9786600095Search in Google Scholar

[22] E.A.J.F.Peters: Europhys. Lett.66 (2004) 311. 10.1209/epl/i2004-10010-4Search in Google Scholar

[23] L.Pastewka, S.Moser, M.Moseler: Tribol. Lett.39 (2010) 49. 10.1007/s11249-009-9566-8Search in Google Scholar

[24] L.Pastewka, S.Moser, M.Moseler, B.Blug, S.Meier, T.Hollstein, P.Gumbsch: Int. J. Mat. Res.10 (2008) 1136. 10.3139/146.101747Search in Google Scholar

[25] U.Landman, W.D.Luedtke, J.Gao: Langmuir12 (1996) 4514. 10.1021/la950890+Search in Google Scholar

[26] E.M.Savitskii, A.Prince: Handbook of precious metals. Hemisphere Publishing Company (1969) p. 128129.Search in Google Scholar

[27] E.Bitzek, P.Koskinen, F.Gèhler, M.Moseler, P.Gumbsch: Phys. Rev. Lett.97 (2006) 170201. 10.1103/PhysRevLett.97.170201Search in Google Scholar PubMed

[28] C.L.Kelchner, S.J.Plimpton, J.C.Hamilton: Phys. Rev. B58 (1998) 11085. 10.1103/PhysRevB.58.11085Search in Google Scholar

[29] N.C.Broedling, A.Hartmaier, M.J.Buehler, H.Gao: J. Mech. Phys. Solids56 (2008) 1086. 10.1016/j.jmps.2007.06.006Search in Google Scholar

[30] J.C.Hamilton, M.S.Daw, S.M.Foiles: Phys. Rev. Lett.74 (1995) 2760. 10.1103/PhysRevLett.74.2760Search in Google Scholar PubMed

[31] W.D.Luedtke, U.Landman: Phys. Rev. Lett.73 (1994) 569. 10.1103/PhysRevLett.73.569Search in Google Scholar PubMed

[32] P.Gumbsch, Z. Metallkd.83 (1992) 500.Search in Google Scholar

[33] P.Gumbsch, M.S.Daw, S.M.Foiles, H.F.Fischmeister, Phys. Rev. B43 (1991) 13833. 10.1103/PhysRevB.43.13833Search in Google Scholar PubMed

Received: 2010-3-2
Accepted: 2010-5-11
Published Online: 2013-05-31
Published in Print: 2010-08-01

© 2010, Carl Hanser Verlag, München

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.3139/146.110365/html
Scroll to top button