Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 11, 2013

Optical and thermodynamic studies of silver nanoparticles stabilized by Daxad 19 surfactant

  • Nurul Akmal Che Lah and Mohd Rafie Johan

Abstract

A method for the reduction of AgNO3 in aqueous Daxad 19 solution is presented in this study. The relationships between the size, shape and optical properties of silver nanoparticles are highlighted while controlling synthesis. The variation of size and shape of silver nanoparticles with the change in reactant temperatures are obtained from the transmission electron microscopy images. Ultra violet-visible spectra show that the Surface Plasmon Resonance peak is shifted to the lower wavelength with decreases in particle size. Gibbs free energies (Gf) of silver nanoparticles were calculated by using the data obtained from UV-Vis spectra. Calculation results proved that the Gf of silver nanoparticles have an intimate relationship with the particle size and shape. Gf increases significantly with decrease in particle size. However, the value dropped significantly after the increase in particle size.


* Correspondence address, Mrs. Nurul Akmal Che Lah, Level 5, Engineering Tower, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia. Tel.: +6017- 6179385, Fax: +603 – 79675317, E-mail:

References

[1] U.Kreibig, M.Vollmer: Optical Properties of Metal Clusters, Springer – Heidelberg, Berlin (1995).10.1007/978-3-662-09109-8Search in Google Scholar

[2] C.F.Bohren, D.R.Huffman: Absorption and scattering of light by small particle, Wiley, New York (1998).10.1002/9783527618156Search in Google Scholar

[3] B.G.Ershov, E.Janata, A.Henglein, A.Fojtik: J. Phys. Chem.97 (1993) 4589.10.1021/j100120a006Search in Google Scholar

[4] A.Henglein: J. Phys. Chem.97 (1993) 5457.10.1021/j100123a004Search in Google Scholar

[5] C.N.R.Rao, K.G.Rao, A.Goel, A.S.N.Murthy: J. Chem. Soc. A75 (1971) 3077.10.1039/j19710003077Search in Google Scholar

[6] M.Jia, Y.Lai, Z.Tian: Modelling Simul. Mater. Sci. Eng.17 (2009) 015006.10.1088/0965-0393/17/1/015006Search in Google Scholar

[7] J.P.Wilcoxon, J.J.E.Martin, F.Parsapour: J. Chem. Phys.108 (1998) 9137.10.1063/1.476360Search in Google Scholar

[8] J.J.Mock, M.Barbic, D.R.Smith: J. Chem. Phys.116 (2002) 6755.10.1063/1.1462610Search in Google Scholar

[9] C.C.Baker, A.Pradhan, S.S.Ismat, in: H.S.Nalwa (Ed.), Encyclopedia of Nanoscience and Nanotechnology, Vol. 5, ASP, California (2004) 463.Search in Google Scholar

[10] A.Moores, F.Gettmann: New J. Chem30 (2006) 1121.10.1039/b604038cSearch in Google Scholar

[11] A.Tripathy, A.M.Raichur, N.Chandrasekaran, T.C.Prathna, A.Mukherjee: J. Nanopar Res12 (2010) 237.10.1007/s11051-009-9602-5Search in Google Scholar

[12] I.Donati, A.Travan, C.Pelillo, T.Scarpa, A.Coslovi, A.Bonifacio, V.Sergo, S.Paoletti: Biomacromolecules10 (2009) 210.10.1021/bm801253cSearch in Google Scholar

[13] D.D.Evanoff, G.Chumanov: Chem Phys Chem6 (2005) 1221.10.1002/cphc.200500113Search in Google Scholar

[14] L.Suber, I.Sondi, E.Matijevic: J. Colloid Inter Sci288 (2005) 489.10.1016/j.jcis.2005.03.017Search in Google Scholar

[15] F.Bresme, N.Quirke: Interface. Phys. Rev. Lett.80 (1998) 3791.10.1103/PhysRevLett.80.3791Search in Google Scholar

[16] J.Faraudo, F.Bresme: J. Chem. Phys.118 (2003) 6518.10.1063/1.1559728Search in Google Scholar

[17] Q.Guo, Y.Zhao, Z.Wang, S.E.Skrabalak, Z.Lin, Y.Xia: J. Phys. Chem C.112 (2008) 20135.10.1021/jp809177nSearch in Google Scholar

[18] H.Ditlbacher, A.Hohenau, D.Wagner, U.Kreibig, M.Rogers, F.Hofer, F.R.Aussenegg, J.R.Krenn: Phys. Rev. Lett.95 (2005) 257403.10.1103/PhysRevLett.95.257403Search in Google Scholar

[19] Q.Guo, Y.Zhao, Z.Wang, S.E.Skrabalak, Z.Lin, Y.Xia: J. Phys. Chem C.112 (2008) 20135.10.1021/jp809177nSearch in Google Scholar

[20] A.Panáčvek, L.Kvítek, R.Prucek: J. Phys. Chem B.116 (2006) 15666.Search in Google Scholar

[21] M.P.Zheng, M.Y.Gu, Y.P.Jin: Mater. Res. Bull.36 (2001) 853.10.1016/S0025-5408(01)00525-6Search in Google Scholar

[22] J.Xu, X.Han, H.Liu, Y.Hu: Colloid and Surf A: Phys. Eng. Asp273 (2006) 179.10.1016/j.colsurfa.2005.08.019Search in Google Scholar

[23] F.Kim, S.Kwan, J.Akana, P.Yang: J. Am. Chem. Soc.123 (2001) 4360.10.1021/ja0059138Search in Google Scholar PubMed

[24] A.Panáčvek, L.Kvítek, R.Prucek: J. Phys. Chem B.116 (2006) 15666.Search in Google Scholar

[25] N.S.Pesika, K.J.Stebe, P.C.Searson: Adv. Matter.15 (2003) 1289.10.1002/adma.200304904Search in Google Scholar

[26] J.A.Theobald, N.S.Oxtoby, M.A.Phillips: Nature424 (2003) 1029.10.1038/nature01915Search in Google Scholar PubMed

[27] C.Luo, Y.Zhang, X.Zeng, Y.Zeng, Y.Wang: J. Colloids Int. Sci.288 (2005) 444.10.1016/j.jcis.2005.03.005Search in Google Scholar PubMed

[28] W.Zhang, X.Qiao, J.Chen: J. Colloids Surf. A: Physic Eng Asp299 (2007) 22.10.1016/j.colsurfa.2006.11.012Search in Google Scholar

[29] J.Faraudo, F.Bresme: J. Non-Equilib. Thermodyn.29 (2004) 397.Search in Google Scholar

[30] I.Sondi, D.V.Goia, E.Matijevi': J. Colloids Inter. Sci.260 (2003) 75.Search in Google Scholar

[31] M.C.Daniel, D.Astruc: Chem. Rev.104 (2004) 293. PMid:14719978; 10.1021/cr030698+Search in Google Scholar PubMed

[32] Y.Okada, H.Nakai, T.Ichikawa, T.Orii, K.Takeuchi: J. Aersl. Res17 (2002) 30.Search in Google Scholar

[33] J.R.Heath, C.M.Knobler, D.V.Leff: J. Phys. Chem. B10 (1997) 189.10.1021/jp9611582Search in Google Scholar

Received: 2010-3-31
Accepted: 2011-1-12
Published Online: 2013-06-11
Published in Print: 2011-03-01

© 2011, Carl Hanser Verlag, München

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.3139/146.110478/html
Scroll to top button