Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 11, 2013

Ordered and disordered states in NiAs/Ni2In-type Ni1+δSn: Crystallography and order formation

  • Andreas Leineweber

Abstract

An overview on the occupational order–disorder behaviour of NiAs/Ni2In-type Ni1+δSn alloys is given. This order–disorder behaviour leads to the occurrence of one disordered high-temperature phase HT and three different low-temperature phases LT, LT′ and LT′′. The low-temperature phases, forming in different compositional regimes, are characterised by long-range order of Ni atoms against vacancies on trigonal-bipyramidal sites formed by Sn, leading to a commensurate superstructure in LT whereas LT′ and LT′′ are incommensurate. Different order–disorder related phase transformation were monitored by X-ray powder diffraction. In particular during the formation of long-range order starting from disordered HT-Ni1+δSn, non-equilibrium crystal structures and microstructures evolve prior to formation of the ideally established equilibrium low-temperature phases. Quantitative analysis of the transformation kinetics including determination of activation energies was done by X-ray powder diffraction. The activation energies of the different processes can be related with the mobility of the Ni atoms in the crystal structure.


* Correspondence address Dr. Andreas Leineweber Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research) Heisenbergstraße 3 70569 Stuttgart Germany Tel.: +49 711 689 3365 Fax: +49 711 689 3312 E-mail:

References

[1] H.J.Goldschmidt: Interstitial alloys, London, Butterworths, 1967.10.1007/978-1-4899-5880-8Search in Google Scholar

[2] A.L.Bowman, N.H.Krikorian, in: N.B.Hannay (Ed.), Treatise on Solid State Chemistry, Vol. 3, Crystalline and Noncrystalline Solids, Academic Press, London, 1983.Search in Google Scholar

[3] A.Kjekshus, W.B.Pearson: Prog. Solid State Chem.1 (1964) 83.10.1016/0079-6786(64)90004-4Search in Google Scholar

[4] S.Lidin, A.-K.Larsson: J. Solid State Chem.118 (1995) 313.10.1006/jssc.1995.1350Search in Google Scholar

[5] S.Lidin: Acta Crystallogr. B54 (1998) 97.10.1107/S010876819701879XSearch in Google Scholar

[6] H.Schmidt, G.Frohberg, H.Wever: Acta Metall. Mater.40 (1992) 3105.10.1016/0956-7151(92)90473-RSearch in Google Scholar

[7] H.Schmidt, G.Frohberg, W.Miekeley, H.Wever: Phys. Stat. Sol. (b)171 (1992) 29.10.1002/pssb.2221710104Search in Google Scholar

[8] P.Nash, A.Nash: Bull. Alloy Phase Diagr.6 (1985) 350.10.1007/BF02880521Search in Google Scholar

[9] H.Fjellvåg, A.Kjekshus: Acta Chem. Scand. A40 (1986) 23.Search in Google Scholar

[10] P.Brand: Z. Anorg. Allg. Chem.353 (1967) 270.10.1002/zaac.19673530509Search in Google Scholar

[11] A.Leineweber, M.Ellner, E.J.Mittemeijer: J. Solid State Chem.159 (2001) 191.10.1006/jssc.2001.9150Search in Google Scholar

[12] A.Leineweber: J. Solid State Chem.177 (2004) 1197.10.1016/j.jssc.2003.10.028Search in Google Scholar

[13] A.Leineweber: J. Solid State Chem.182 (2009) 1846.10.1016/j.jssc.2009.04.019Search in Google Scholar

[14] C.Schmetterer, H.Flandorfer, K.W.Richter, U.Saeed, M.Kauffman, P.Roussel, H.Ipser: Intermetallics15 (2007) 869.10.1016/j.intermet.2006.10.045Search in Google Scholar

[15] H.Okamoto: J. Phase Equil. Diff.29 (2008) 297.10.1007/s11669-008-9313-0Search in Google Scholar

[16] G.Gosh: Metall. Mater. Trans. A40 (2009) 4.10.1007/s11661-008-9682-3Search in Google Scholar

[17] B.W.Roberts: Acta Metallurg.2 (1954) 597.10.1016/0001-6160(54)90194-7Search in Google Scholar

[18] E.K.H.Salje: Acta Crystallogr. A47 (1991) 453.10.1107/S0108767391004300Search in Google Scholar

[19] A.-K.Larsson, R.L.Withers, L.Stenberg: J. Solid State Chem.127 (1996) 222.10.1006/jssc.1996.0378Search in Google Scholar

[20] A.Leineweber, O.Oeckler, U.Zachwieja: J. Solid State Chem.177 (2004) 936.10.1016/j.jssc.2003.09.033Search in Google Scholar

[21] A.Leineweber, E.J.Mittemeijer, M.Knapp, C.Baehtz: Phil. Mag.87 (2007) 1821.10.1080/14786430601083355Search in Google Scholar

[22] H.E.Cook: Mater. Sci. Eng.25 (1976) 127.10.1016/0025-5416(76)90059-8Search in Google Scholar

[23] W.A.Soffa, D.E.Laughlin: Acta Metallurg.37 (1989) 3019.10.1016/0001-6160(89)90338-6Search in Google Scholar

[24] H.Wondratschek, W.Jeitschko: Acta Crystallogr. A32 (1976) 664.10.1107/S056773947600137XSearch in Google Scholar

[25] A.Leineweber, F.Krumeich et al. To be publishedSearch in Google Scholar

[26] A.Leineweber, E.J.Mittemeijer: J. Appl. Cryst.43 (2010) 981.10.1107/S0021889810030451Search in Google Scholar

[27] D.Rafaja, V.Klemm, G.Schreiber, M.Knapp, R.Kuzel: J. Appl. Cryst.37 (2004) 613.10.1107/S0021889804012701Search in Google Scholar

[28] A.Leineweber, E.J.Mittemeijer, M.Knapp, C.Baehtz: Mater. Sci. Forum443–444 (2004) 247.10.4028/www.scientific.net/MSF.443-444.247Search in Google Scholar

[29] A.Leineweber, E.J.Mittemeijer: Z. Kristallogr. Suppl.23 (2006) 351.Search in Google Scholar

[30] A.Leineweber, E.J.Mittemeijer: Z. Kristallogr.222 (2007) 150.10.1524/zkri.2007.222.3-4.150Search in Google Scholar

[31] E.J.Mittemeijer: J. Mater. Sci.29 (1991) 3977.10.1007/BF01105093Search in Google Scholar

[32] M.Hillert: Acta Metallurg.13 (1965) 227.10.1016/0001-6160(65)90200-2Search in Google Scholar

[33] W.Baumann, A.Leineweber, E.J.Mittemeijer: J. Mater. Sci.45 (2010) 6075.10.1007/s10853-010-4693-zSearch in Google Scholar

[34] H.E.Kissinger: Anal. Chem.29 (1957) 1702.10.1021/ac60131a045Search in Google Scholar

[35] A.Leineweber: Acta Mater.55 (2007) 6651.10.1016/j.actamat.2007.08.020Search in Google Scholar

[36] J.Aufrecht, PhD Thesis, University of Stuttgart (2010).Search in Google Scholar

[37] J.Aufrecht, A.Leineweber, E.J.Mittemeijer, Intermet. accepted.Search in Google Scholar

Received: 2011-2-21
Accepted: 2011-5-4
Published Online: 2013-06-11
Published in Print: 2011-07-01

© 2011, Carl Hanser Verlag, München

Downloaded on 11.5.2024 from https://www.degruyter.com/document/doi/10.3139/146.110540/html
Scroll to top button