Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 11, 2013

Heating rate effects on reverse martensitic transformation in a Cu – Zn – Al shape memory alloy

  • Nicoleta Monica Lohan , Bogdan Pricop , Leandru-Gheorghe Bujoreanu and Nicanor Cimpoeşu

Abstract

Different fragments of martensitic Cu-14.86 Zn-5.81 Al-0.5 Fe (mass.%) shape memory alloy were subjected to heating, up to 453 K, with different rates ranging from 1.66 ×10−2 K s−1 to 54.6 × 1.66 × 10−2 K s−1, performed by means of a differential scanning calorimeter. In all cases, during heating, an endothermic peak was observed which was associated with the martensite reversion to parent phase. By means of the differential scanning calorimeter charts the critical transformation temperatures of martensite reversion were determined using the tangent method. The effects of heating rate were evaluated from the point of view: (i) of variation tendencies of critical transformation temperatures; (ii) of deviations of experimental values from linear fit and extrapolation to zero heating rate; and (iii) of corroborating morphological changes of martensite (sub)plates with heat flow variation particularities. The results prove that there is an obvious tendency of critical transformation temperatures, of reverse martensitic transformation, to linearly increase with heating rate. The effectiveness of the linear relationships was checked for two heating rate values located inside and outside the above mentioned range, respectively and the difference between the experimental and calculated values of critical transformation temperatures fell within the range (−3 … +4) ‰.


* Correspondence address, Prof. Leandru-Gheorghe Bujoreanu, Faculty of Materials Science and Engineering, The “Gh. Asachi” Technical University of Iasşi, Iasşi, Romania, Tel.: +40 232 278 680 ext. 2287, Fax: +40 232 225 986, E-mail:

References

[1] T.Tadaki, in: K.OtsukaC.M.Wayman (Eds.), Shape Memory Materials. Cambridge University Press (1998) 97.Search in Google Scholar

[2] P.K.Kumar, D.C.Lagoudas, in: D.C.Lagoudas (Ed.), Shape Memory Alloys. Modeling and Engineering Applications, Springer, New York (2008) 1. 10.1007/978-0-387-47685-8_1Search in Google Scholar

[3] A.Q.Khan, L.Delaey: Scripta Metall.4 (1970) 981. 10.1016/0036-9748(70)90044-XSearch in Google Scholar

[4] J.D.Harrison, in: T.W.Duerig, K.N.Melton, D.Stöckel, C.M.Wayman (Eds.), Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, Oxford (1990) 106.Search in Google Scholar

[5] W.De Jonghe, R.De Baptist, L.Delaey, M.De Bonte, in: J.Perkins (Ed.), Shape Memory Effects in Alloys, Plenum Press, New York (1975) 451.10.1007/978-1-4684-2211-5_23Search in Google Scholar

[6] V.J.Griffin, P.G.Laye, in: E.L.Charsley, S.B.Warrington (Eds.), Thermal Analysis – Techniques and Applications, Royal Society of Chemistry, Cambridge (1992) 17.Search in Google Scholar

[7] J.L.Pelegrina, V.Torra: Mater. Sci. Eng. A527 (2010) 2437. 10.1016/j.msea.2009.06.053Search in Google Scholar

[8] V.Torra, H.Tachoire: Thermochim. Acta203 (1992) 419. 10.1016/0040-6031(92)85214-GSearch in Google Scholar

[9] J.Ortin, in: E.Patoor, M.Berveiller, (Eds.) Technologie des Alliages à Mémoire de Forme, Hermès, Paris (1994) 167.Search in Google Scholar

[10] M.Benke, F.Tranta, P.Barkóczy, V.Mertinger, L.Daróczi: Mater. Sci. Eng. A481 (2008) 522. 10.1016/j.msea.2007.01.184Search in Google Scholar

[11] D.V.Malakhov, M.K.Abou Khatwa: J. Therm. Anal. Calorim.87 (2007) 595. 10.1007/s10973-006-7702-3Search in Google Scholar

[12] L.G.Bujoreanu, S.Stanciu, A.Enache, C.Lohan, I.Rusu: J. Optoelectron. Adv. Mater.3 (2008) 602.Search in Google Scholar

[13] V.Dia, L.G.Bujoreanu, S.Stanciu, C.Munteanu: Mater. Sci. Eng. A481 (2008) 697. 10.1016/j.msea.2006.10.211Search in Google Scholar

[14] L.G.Bujoreanu: Mater. Sci. Eng. A481 (2008) 395. 10.1016/j.msea.2006.12.223Search in Google Scholar

[15] L.G.Bujoreanu, M.L.Craus, I.Rusu, S.Stanciu, D.Sutiman: J. Alloys Compd.278 (1998) 190. 10.1016/S0925-8388(98)00463-0Search in Google Scholar

[16] L.G.Bujoreanu, M.L.Craus, S.Stanciu, V.Dia: Mater. Sci. Technol.16 (2000) 612.10.1179/026708300101508360Search in Google Scholar

[17] V.Torra, C.Auguet, A.Isalgue, F.C.Lovey, A.Sepulveda, H.Soul: J. Therm. Anal. Calorim.2010. 10.1007/s10973-009-0613-3Search in Google Scholar

[18] M.H.Wu, in: T.W.Duerig, K.N.Melton, D.Stöckel, C.M.Wayman (Eds.), Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, Oxford (1990) 69.Search in Google Scholar

[19] L.G.Bujoreanu, N.M.Lohan, B.Pricop, N.Cimpoesşu: J. Mater. Eng. Perform.20 (3) (2011) 468. 10.1007/s11665-010-9702-5Search in Google Scholar

[20] J.H.Yang, L.C.Zhao, C.S.Zhang, T.C.Lei, Y.M.Yang, in: Proc. ICOMAT-86, The Japan Institute of Metals (1986) 816.Search in Google Scholar

[21] J.Spielfield: Mater. Sci. Eng. A273 (1999) 639.10.1016/S0921-5093(99)00339-1Search in Google Scholar

[22] J.L.Pelegrina, R.Romero: Mater. Sci. Eng. A282 (2000) 16. 10.1016/S0921-5093(99)00792-3Search in Google Scholar

[23] F.J.Gil, J.M.Guilemany: J. Mater. Sci. Lett.10 (1991) 1016. 10.1007/BF00721832Search in Google Scholar

Received: 2010-07-23
Accepted: 2011-08-31
Published Online: 2013-06-11
Published in Print: 2011-11-01

© 2011, Carl Hanser Verlag, München

Downloaded on 6.5.2024 from https://www.degruyter.com/document/doi/10.3139/146.110595/html
Scroll to top button