Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 11, 2013

Crystal chemistry and properties of mullite-type Bi2M4O9: An overview

  • Hartmut Schneider , Reinhard X. Fischer , Thorsten M. Gesing , Jürgen Schreuer and Manfred Mühlberg

Abstract

Bi2M4O9 (M = Al3+, Ga3+, Fe3+) belongs to the family of mullite-type crystal structures. The phases are orthorhombic with the space group Pbam. The backbones of the isostructural phases are edge-connected, mullite-type octahedral chains. The octahedral chains are linked by dimers of M2O7 tetrahedral groups and by BiO polyhedra. The Bi3+ cations in Bi2M4O9 contain stereo-chemically active 6s2 lone electron pairs (LEPs) which are essential for the stabilization of the structure. Although the octahedral chains of the closely related Bi2Mn4O10 are similar to those of Bi2M4O9, Bi2Mn4O10 contains dimers of edge-connected, five-fold coordinated pyramids instead of four-fold coordinated tetrahedra. Also the 6s2 LEPs of Bi3+ in Bi2Mn4O10 are not stereo-chemically active. Complete and continuous solid solutions exist for Bi2(Al1xFex)4O9 and Bi2(Ga1xFex)4O9 (x = 0–1). Things are more complex in the case of the Bi2(Fe1xMnx)4O9+y mixed crystals, where a miscibility gap occurs between x = 0.25–0.75. In the Fe-rich mixed crystals most Mn atoms enter the octahedra as Mn4+, with part of the tetrahedral dimers being replaced by fivefold coordinated polyhedra, whereas in the Mn-rich compound Fe3+ favorably replaces Mn3+ in the pyramids.

The crystal structure of Bi2M4O9 directly controls its mechanical properties. The stiffnesses of phases are highest parallel to the strongly bonded octahedral chains running parallel to the crystallographic c-axis. Perpendicular to the octahedral chains little anisotropy is observed. The temperature-induced expansion perpendicular to the octahedral chains is probably superimposed by contractions. As a result the c-axis expansion appears as relatively high and does not display its lowest value parallel to c, as could be inferred.

Maximally 6% of Bi3+ is substituted by Sr2+ in Bi2Al4O9 corresponding to a composition of (Bi0.94Sr0.06)2Al4O8.94. Sr2+ for Bi3+ substitution is probably associated with formation of vacancies of oxygen atoms bridging the tetrahedral dimers. Hopping of oxygen atoms towards the vacancies should strongly enhance the oxygen conductivity. Actually the conductivity is rather low (σ = 7 · 102 S m1 at 1073 K, 800°C). An explanation could be the low thermal stability of Sr-doped Bi2Al4O9, especially in coexistence with liquid Bi2O3. Therefore, Bi2Al4O9 single crystals and polycrystalline ceramics both with significant amounts of M2+ doping (M = Ca2+, Sr2+) have not been produced yet. Thus the question whether or not M2+-doped Bi2M4O9 is an oxygen conducting material is still open.


* Correspondence address Prof. Dr. Hartmut Schneider Institute of Crystallography University of Köln Greinstr. 6 50939 Köln, Germany Tel.: +49 221 470 25 32 Fax: +49 221 470 49 63 E-mail:

References

[1] S.Zha, J.Cheng, Y.Liu, X.Liu, G.Meng: Solid State Ionics156 (2003) 197. 10.1016/S0167-2738(02)00172-8Search in Google Scholar

[2] I.Bloom, M.C.Hash, J.P.Zebrowski, K.M.Myles, M.Klumpelt: Solid State Ionics53–56 (1992) 739. 10.1016/0167-2738(92)90249-OSearch in Google Scholar

[3] J.B.Goodenough: Ann. Rev. Mater. Res.33 (2003) 91. 10.1146/annurev.matsci.33.022802.091651Search in Google Scholar

[4] I.Abrahams, A.J.Bush, G.E.Hawkes, T.Nunes: J. Solid State Chem.147 (1999) 631. 10.1006/jssc.1999.8427Search in Google Scholar

[5] V.V.Volkov, A.V.Egorysheva: Opt. Mater.5 (1995) 273. 10.1016/0925-3467(96)00005-5Search in Google Scholar

[6] V.V.Volkov, A.V.Egorysheva, Yu.F.Kargin, V.I.Solomonov, S.G.Mikailov, S.I.Buzmakova, B.V.Shul'gin, V.M.Korikov: Inorg. Mater.32 (1996) 455.Search in Google Scholar

[7] L.H.Brixner: Mat. Res. Bull.13 (1978) 563. 10.1016/0025-5408(78)90179-4Search in Google Scholar

[8] A.S.Poghossian, H.V.Abovian, P.B.Avakian, S.H.Mkrtchian, V.M.Haroutunian: Sens. ActuatorsB4 (1991) 545. 10.1016/0925-4005(91)80167-ISearch in Google Scholar

[9] S.Sun, W.Wang, L.Zhang, M.Shang: J. Phys. Chem.C113 (2009) 12826. 10.1021/jp9029826Search in Google Scholar

[10] N.I.Zakharchenko: Russ. J. Appl. Chem.73 (2000) 2047.Search in Google Scholar

[11] Y.Xiong, M.Z.Wu, Z.M.Peng, N.Jiang, Q.W.Chen: Chem. Lett.33 (2004) 502. 10.1246/cl.2004.502Search in Google Scholar

[12] T.-J.Park, G.C.Papaefthymiou, A.R.Moodenbaugh, Y.Mao, S.S.Wong: J. Mater. Chem.15 (2005) 2099. 10.1039/b501552aSearch in Google Scholar

[13] Y.Wang, G.Xu, L.Yang, Z.Ren, X.Wie, W.Weng, P.Du, G.Shen, G.Han: Ceramics Intern.35 (2009) 51. 10.1016/j.ceramint.2007.09.114Search in Google Scholar

[14] Z.Yang, Y.Huang, B.Dong, H.-L.Li, S.-Q.Shi: J. Solid State Chem.179 (2006) 3324. 10.1016/j.jssc.2006.06.029Search in Google Scholar

[15] Q.-J.Ruan, W.D.Zhang: J. Phys. Chem.C113 (2009) 4168. 10.1021/jp810098fSearch in Google Scholar

[16] D.M.Giaquinta, G.C.Papaefthymiou, W.M.Davis, H.-C.Zur Loye: J. Solid State Chem.99 (1992) 120. 10.1016/0022-4596(92)90296-8Search in Google Scholar

[17] D.M.Giaquinta, G.C.Papaefthymiou, H.-C.Zur Loye: J. Solid State Chem.114 (1995) 199. 10.1006/jssc.1995.1028Search in Google Scholar

[18] J.Schreuer, M.Burianek, M.Mühlberg, B.Winkler, D.J.Wilson, H.Schneider: J. Phys, Condens. Matter18 (2006) 977. 10.1088/0953-8984/18/48/025Search in Google Scholar

[19] M.Burianek, M.Mühlberg, M.Woll, M.Schmücker, Th.M.Gesing, H.Schneider: Cryst. Res. Technol.44 (2009) 1156. 10.1002/crat.200900465Search in Google Scholar

[20] T.Debnath, C.H.Rüscher, P.Fielitz, S.Ohmann, G.Borchardt: J. Solid State Chem.183 (2010) 2582. 10.1016/j.jssc.2010.07.019Search in Google Scholar

[21] Th.M.Gesing, M.Schowalter, C.Weidenthaler, M.M.Murshed, G.Nenert, A.Rosenauer, J.-C.Buhl, R.X.Fischer, H.Schneider: J. Am. Chem. Soc., Submitted for publication.Search in Google Scholar

[22] Th.M.Gesing, R.X.Fischer, M.Burianek, M.Mühlberg, T.Debnath, C.H.Rüscher, J.Ottinger, J.-C.Buhl, H.Schneider: J. Eur. Ceram. Soc.31 (2011) 3055. 10.1016/j.jeurceramsoc.2011.04.004Search in Google Scholar

[23] W.C.J.Wei, S.Y.Chuang, Y.C.Hu, H.Schneider: Int. J. Mat. Res., 103 (2012) 456.10.3139/146.110720Search in Google Scholar

[24] N.Niizeki, M.Wachi: Z. Krist.127 (1968) 173. 10.1524/zkri.1968.127.1-4.173Search in Google Scholar

[25] D.M.Giaquinta, H.-C.zur Loye: J. Alloys Comp.184 (1992) 151. 10.1016/0925-8388(92)90463-JSearch in Google Scholar

[26] R.X.Fischer, H.Schneider, in: H.Schneider, S.Komarneni, (Eds.), Mullite, Wiley-VCH, Weinheim (2005) 146.10.1002/3527607358Search in Google Scholar

[27] R.X.Fischer, A.Gaede-Köhler, I.Birkenstock, H.Schneider: Int. J. Mat. Res.103 (2012) 402.Search in Google Scholar

[28] A.Beran, E.Libowitzky, M.Burianek, M.Mühlberg, C.Pecharroman, H.Schneider: Cryst. Res. Technol.43 (2008) 1230. 10.1002/crat.200800396Search in Google Scholar

[29] A.Friedrich, E.A.Juarez-Arellano, E.Haussühl, R.Boehler, B.Winkler, L.Wiehl, W.Morgenroth, M.Burianek, M.Mühlberg: Acta Cryst.B66 (2010) 32. PMid: 20484803; 10.1107/S0108768110010104Search in Google Scholar PubMed

[30] J.H.Miao, T.-T.Fang, H.-Y.Chung, C.-W.Yang: J. Am. Ceram. Soc.92 (2009) 2762. 10.1111/j.1551-2916.2009.03238.xSearch in Google Scholar

[31] D.Voll, A.Beran, H.Schneider: Phys. Chem. Minerals33 (2006) 623. 10.1007/s00269-006-0108-8Search in Google Scholar

[32] K.L.Da Silva, V.Sepelak, A.PaesanoJr., F.J.Litterst, K.-D.Becker: Z. Anorg. Allg. Chemie636 (2010) 1018.Search in Google Scholar

[33] S.-V.Weber, Th.M.Gesing, J.Röder, F.J.Litterst, R.X.Fischer, K.-D.Becker: Int. J. Mat. Res.103 (2012) page ##.Search in Google Scholar

[34] K.-D.Becker: pers. comm.Search in Google Scholar

[35] Z.R.Kann, J.T.Auletta, E.W.Hearn, S.-U.Weber, K.-D.Becker, H.Schneider, M.W.Lufaso: J. Solid State Chem. In press.Search in Google Scholar

[36] R.D.Shannon: Acta Cryst.A32 (1976) 751. 10.1107/S0567739476001551Search in Google Scholar

[37] S.Ohmann, P.Fielitz, L.Dörrer, G.Borchardt, Th.M.Gesing, R.X.Fischer, C.H.Rüscher, J.C.Buhl, H.Schneider: Solid State Ionics (2011) submitted for publication.Search in Google Scholar

[38] Th.F.Krenzel, J.Schreuer, Th.M.Gesing, M.Burianek, M.Mühlberg, H.Schneider: Int. J. Mat. Res., 103 (2012) page ##.Search in Google Scholar

[39] S.K.Filatov, S.V.Krivovichev, Y.U.Aleksandrova, R.S.Bubnova, A.V.Egorysheva, P.Burns, Y.F.Kargin, V.V.Volkov: Russ. J. Inorg. Chem.51 (2006) 878. 10.1134/S0036023606060052Search in Google Scholar

[40] H.Schneider, J.Schreuer, B.Hildmann: J. Eur. Ceram. Soc.28 (2008) 329. 10.1016/j.jeurceramsoc.2007.03.017Search in Google Scholar

[41] L.Lopez-de-la-Torre, A.Friedrich, E.A.Juarez-Arellano, B.Winkler, D.J.Wilson, L.Bayarjargal, M.Hanfland, M.Burianek, M.Mühlberg, H.Schneider: J. Solid State Chem.182 (2009) 767. 10.1016/j.jssc.2008.12.019Search in Google Scholar

[42] S.Larose, S.A.Akbar: J. Solid State Electrochem.10 (2006) 488. 10.1007/s10008-005-0002-1Search in Google Scholar

[43] O.Jarchow, K.-H.Klaska, M.Werk: Naturwiss.68 (1981) 92. 10.1007/BF01047230Search in Google Scholar

[44] O.Jarchow, K.-H.Klaska, M.Werk: Z. Krist.154 (1981) 31. 10.1524/zkri.1981.154.1-2.31Search in Google Scholar

[45] O.Jarchow, K.-H.Klaska, M.Werk: Z. Krist.159 (1982) 65.Search in Google Scholar

[46] A.Durand, O.Mentre, F.Abraham, T.Fukuda, B.Elouadi: Solid State Sci.8 (2006) 155. 10.1016/j.solidstatesciences.2005.08.016Search in Google Scholar

[47] R.V.Shpanchenko, A.A.Tsirlin, E.S.Kondakova, E.V.Antipov, C.Bougerol, J.Hadermann, G.v.Tandeloo, H.Sakurai, E.Takayama-Muromachi: J. Solid State Chem.181 (2008) 2433. 10.1016/j.jssc.2008.05.043Search in Google Scholar

Received: 2011-12-1
Accepted: 2012-1-21
Published Online: 2013-06-11
Published in Print: 2012-04-01

© 2012, Carl Hanser Verlag, München

Downloaded on 21.5.2024 from https://www.degruyter.com/document/doi/10.3139/146.110716/html
Scroll to top button