Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 11, 2013

Processing and characterization of mechanically alloyed immiscible metals

  • Challapalli Suryanarayana and Jinling Liu

Abstract

A number of metal systems exhibit positive heat of mixing between the constituent elements and consequently they are immiscible and cannot form alloys. Some classical examples of these systems are Ti–Mg, Zr–Nb, W–Cu, Ni–Ag, and Cu–Fe. We have investigated the alloying behavior of the Ni–Ag, Ti–Mg, and Zr–Nb systems through two solid-state non-equilibrium processing techniques, viz., mechanical alloying and high-pressure torsion. Increases in solid solubility limits have been achieved in all the systems, although the magnitude of the increase is different in the different alloy systems. The results obtained are also different depending on the technique employed and the lattice strain introduced into the system. The extent of increase in solid solubility limits has been rationalized in terms of the heat of mixing between the constituent metals and it is shown that the solid solubility limit is higher the smaller the positive heat of mixing.


1 Correspondence address: Professor C. Suryanarayana, Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL. 32816-2450, USA, Tel.: +1-407-823-6662, Fax: +1-407-823-0208, E-mail:

Refrences

[1]D.A.Porter, K.E.Easterling, M.Y.Sherif: Phase Transformations in Metals and Alloys, CRC Press, Boca Raton, FL. (2009).Search in Google Scholar

[2]C.Suryanarayana (Ed.): Non-equilibrium Processing of Materials, Pergamon/Elsevier, Oxford, UK (1999).Search in Google Scholar

[3]H.H.Liebermann (Ed.): Rapidly Solidified Alloys, Marcel Dekker, New York, (1993).Search in Google Scholar

[4]T.R.Anantharaman, C.Suryanarayana: Rapidly Solidified Metals – A Technological Overview, Trans Tech Publications, Zurich, Switzerland (1987).Search in Google Scholar

[5]C.Suryanarayana, A.Inoue: Bulk Metallic Glasses, CRC Press, Boca Raton, FL. (2011).Search in Google Scholar

[6]C.Suryanarayana: Prog. Mater. Sci, 46 (2001) 1184. 10.1016/S0079-6425(99)00010-9Search in Google Scholar

[7]C.Suryanarayana: Mechanical Alloying and Milling, Marcel Dekker, New York (2004). 10.1201/9780203020647Search in Google Scholar

[8]N.Tsuji, Y.Saito, S.H.Lee, Y.Minamino: Adv. Eng. Mater.5 (2003) 338344. 10.1002/adem.200310077Search in Google Scholar

[9]C.Suryanarayana: Internat. Mater. Rev.40 (1995) 4164. 10.1179/095066095790151106Search in Google Scholar

[10]C.Suryanarayana: Adv. Eng. Mater.7 (2005) 983992. 10.1002/adem.200500135Search in Google Scholar

[11]A.K.Niessen, F.R.de Boer, R.Boom, P.F.de Châtel, W.C.M.Mattens, A.R.Miedema: CALPHAD7 (1983) 5170. 10.1016/0364-5916(83)90030-5Search in Google Scholar

[12]J.L.Murray: Phase Diagrams of Binary Titanium Alloys, ASM International, Materials Park, OH (1987).Search in Google Scholar

[13]E.W.Goliber, K.H.McKee: in “Progress in Very High Pressure Research”, F.P.Bundy, W.R.Hibbard, Jr., H.M.Strong (Eds.), John Wiley & Sons, New York, 1961, pp. 126132.Search in Google Scholar

[14]I.Obinata, Y.Takeuchi, R.H.Kawanishi: Metall.13 (1959) 392394.Search in Google Scholar

[15]J.W.Frederickson: Trans. AIME203 (1955) 368371.Search in Google Scholar

[16]P.S.Gilman, J.S.Benjamin: Annual Rev. Mater. Sci., 13 (1983) 279300. 10.1146/annurev.ms.13.080183.001431Search in Google Scholar

[17]R.Sundaresan, F.H.Froes: Key Eng. Mater.29-31 (1989) 199206.Search in Google Scholar

[18]C.Suryanarayana, F.H.Froes: J. Mater. Res.5 (1990) 18801886. 10.1557/JMR.1990.1880Search in Google Scholar

[19]E.Zhou, C.Suryanarayana, F.H.Froes: in “Synthesis/Processing of Lightweight Metallic Materials”, F.H.Froes, C.Suryanarayana, C.M.Ward-Close (Eds.), TMS, Warrendale, PA, (1995), 4351.Search in Google Scholar

[20]E.Zhou, C.Suryanarayana, F.H.Froes: Mater. Letters23 (1995) 2731. 10.1016/0167-577X(95)00009-7Search in Google Scholar

[21]T.Miyazaki, D.Terada, Y.Miyajima, C.Suryanarayana, R.Murao, Y.Yokoyama, K.Sugiyama, M.Umemoto, Y.Todaka, N.Tsuji: J. Mater. Sci.46 (2011) 42964301. 10.1007/s10853-010-5240-7Search in Google Scholar

[22]C.Suryanarayana, R.Pippan: Unpublished results (2011).Search in Google Scholar

[23]U.M.R.Seelam, C.Suryanarayana: J. Appl. Phys.105 (2009) 0635241 to 063524-8.10.1063/1.3100037Search in Google Scholar

[24]U.M.R.Seelam, G.Barkhordarian, C.Suryanarayana: J. Mater. Res.24 (2009) 34543461. 10.1557/jmr.2009.0423Search in Google Scholar

[25]I.Manna, P.P.Chattopadhyay, P.Nandi, F.Banhart, H.J.Fecht: J. Appl. Phys.93 (2003) 15201524. 10.1063/1.1530718Search in Google Scholar

[26]I.Manna, P.P.Chattopadhyay, F.Banhart, H.J.Fecht: Appl. Phys. Lett.81 (2002) 41364138. 10.1063/1.1519942Search in Google Scholar

[27]C.Suryanarayana: Intermetallics3 (1995) 153160. 10.1016/0966-9795(95)92680-XSearch in Google Scholar

[28]Z.Peng, C.Suryanarayana, F.H.Froes: Metall. Mater. Trans. A27 (1996) 4148. 10.1007/BF02647745Search in Google Scholar

[29]C.Suryanarayana, A.Inoue, T.Masumoto: J. Mater. Sci.15 (1980) 19932000. 10.1007/BF00550625Search in Google Scholar

[30]A.Inoue, Y.Takahashi, C.Suryanarayana, T.Masumoto: J. Mater. Sci.17 (1982) 32533262. 10.1007/BF01203492Search in Google Scholar

[31]A.Inoue, Y.Takahashi, C.Suryanarayana, T.Masumoto: J. Mater. Sci.17 (1982) 17531764. 10.1007/BF00540804Search in Google Scholar

[32]M.T.Pérez-PradoA.P.Zhilyaev: Phys. Rev. Lett.102 (2009) 1755041 to 175504-4.10.1103/PhysRevLett.102.175504Search in Google Scholar PubMed

[33]M.T.Pérez-PradoA.Sharafutdinov, A.P.Zhilyaev: Mater. Lett.64 (2010) 211214. 10.1016/j.matlet.2009.10.049Search in Google Scholar

[34]A.P.Zhilyaev, F.Gálvez, A.Sharafutdinov, M.T.Pérez-Prado: Mater. Sci. Eng. A527 (2010) 39183928. 10.1016/j.msea.2010.02.066Search in Google Scholar

Received: 2011-11-18
Accepted: 2012-3-5
Published Online: 2013-06-11
Published in Print: 2012-09-01

© 2012, Carl Hanser Verlag, Munich

Downloaded on 16.4.2024 from https://www.degruyter.com/document/doi/10.3139/146.110781/html
Scroll to top button